Quest For the Best Antioxidant Component Present in Aloe vera: A Theoretical Study

Authors

  • Arpita Das Department of Chemistry, Cotton University, Guwahati, Assam, INDIA-781001 Author
  • Pranjal Bhuyan Department of Chemistry, Pandu College, Guwahati, Assam, INDIA-781012 Author
  • Mausumi Ganguly Department of Chemistry, Cotton University, Guwahati, Assam, INDIA-781001 Author
  • Ankur K. Guha Department of Chemistry, Cotton University, Guwahati, Assam, INDIA-781001 Author

DOI:

https://doi.org/10.63635/mrj.v1i1.9

Keywords:

Aloe vera, Antioxidants, Bioavailability, Theoretical

Abstract

Aloe vera is known to have many antioxidants. However, the best component is not known yet. In this study, a search for the best candidate to show antioxidant ability is made through quantum chemical calculations. Antioxidant behavior at different solvent medium including the lipid environment has been explored. Our study reveals that out of ten major components of Aloe vera, three of them, namely esculetin, umbelliferone and aloinoside A have been found to possess superior ability. Moreover, these three components have shown similar antioxidant ability as that of resveratrol and gallic acid while they perform better than fumaric acid.

References

[1] Borgohain, R; Guha, A.K; Pratihar, S; Handique, J.G. Antioxidant activity of some phenolic aldehydes and their diimine derivatives: A DFT study. Comput Theor Chem. 2015, 17, 1060, DOI: 10.1016/j.comptc.2015.02.014.

[2] Borpujari, M.P.; Rohman, R.; Kar. R. Antioxidant properties can be tuned in the presence of an external electric field: accurate computation of O–H BDE with range-separated density functionals. RCS Adv. 2015, 5,78229, DOI: 10.1039/C5RA13462E

[3] Marchand, L. Cancer preventive effects of flavonoids—a review. Biomed Pharmacother. 2002, 56, 296, DOI: https://www.sciencedirect.com/science/article/abs/pii/S0753332202001865

[4] Shabaan, S.; Ba, L.A.; Abbas, M.; Burkholz, T.; Denkert, A.; Gohr, A.; Wessjohann, L.A.; Sasse, F.; Weber, W.; Jacob, C. Multicomponent reactions for the synthesis of multifunctional agents with activity against cancer cells. Chem Commun. 2009, 4702, DOI: 10.1039/B823149D

[5] Amorati, R.; Valgimigli, L.; Dinér, P.; Bakhtiari, K.; Saeedi, M.; Engman, L. Catalytic Chain-Breaking Pyridinol Antioxidants. Chem Eur J. 2013, 19, 7510 DOI: 10.1021/jo902226t

[6] Marino, T.; Galano, A.; Mazzone, G.; Russo, N.; Idaboy, J.R.A. Chemical Insights into the Antioxidant Mechanisms of Alkylseleno and Alkyltelluro Phenols: Periodic Relatives Behaving Differently. Chem Eur J. 2018, 24, 8686. DOI: 10.1002/chem.201800913

[7] Anto, R.J.; Sukumarana, K.; Kuttana, G.; Raob, M.N.A.; Subbarajuc, V.; Kuttana, R. Anticancer and antioxidant activity of synthetic chalcones and related compounds. Cancer Lett. 1995, 97, 33. DOI: 10.1016/0304-3835(95)03945-s

[8] Borgohain, R.; Guha, A.K.; Pratihar, S.; Handique, J.G. A theoretical study on antioxidant activity of ferulic acid and its ester derivatives. J Theor Comput Chem, 2016, 15, 1650028. DOI:10.1142/S0219633616500280

[9] Trouillas, P.; Marsal, P.; Svobodova, A.; Vostalova, J.; Gazak, R.; Hrbac, J.; Sedmera, P.; Kren, V.; Lazzaroni, R.; Duroux, J.L.; Walterova. D. Mechanism of the Antioxidant Action of Silybin and 2,3-Dehydrosilybin Flavonolignans: A Joint Experimental and Theoretical Study. J Phys Chem A. 2008, 112, 1054, DOI: 10.1021/jp075814h

[10] Matxain, J.M.; Ristilä, M.;Strid, A.; Eriksson, L.A. Theoretical study of the antioxidant properties of pyridoxine. J Phys Chem A 2006, 110, 13068, DOI: 10.1021/jp065115p

[11] Borges, E.L.; Ignasiak, M.T.; Velichenko, Y.; Perin, G.; Hutton, C.A.; Davies, M.J.; Schiesser, C.H. Synthesis and antioxidant capacity of novel stable 5-tellurofuranose derivatives. Chem Commun 2018, 54, 2990, DOI: 10.1039/C8CC00565F

[12] Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev. 2004, 104, 6255,DOI: 10.1021/cr0406559 and references therein

[13] Storkey, C.; Davies, M.L.; White, J.M.; Schiesser, C.H. Synthesis and antioxidant capacity of 5- selenopyranose derivatives. Chem Commun. 2011, 47, 9693, DOI: 10.1039/C1CC13652F

[14] Kimani, M.M.; Wang, H.C.; Brumaghim, J.L. Investigating the copper coordination, electrochemistry, and Cu(ii) reduction kinetics of biologically relevant selone and thione compounds. Dalton Trans. 2012, 41, 5248, DOI: 10.1039/C2DT11731B

[15] Luna, P.D.; Bushnell, E.A.C.; Gauld, J.W. A Density Functional Theory Investigation into the Binding of the Antioxidants Ergothioneine and Ovothiol to Copper. J Phys Chem A. 2013, 117, 4057.DOI:10.1021/jp402514w

[16] Storkey, C.; Pattison, D.I.; White, J.M.; Schiesser, C.H.; Davies, M.J. Preventing protein oxidation with sugars: scavenging of hypohalous acids by 5-selenopyranose and 4-selenofuranose derivatives. Chem Res Toxicol. 2012, 25, 2589. DOI: 10.1021/tx3003593

[17] Storkey, C.; Pattison, D.I.; Ignasiak, M.T.; Schiesser, C.H.; Davies, M.J. Kinetics of reaction of peroxynitrite with selenium- and sulfur-containing compounds: absolute rate constants and assessment of biological significance. Free Radic Biol Med. 2015, 89, 1049. DOI: 10.1016/j.freeradbiomed.2015.10.424

[18] Galano, A.; Arriaga, R.C.; González, A.P.; Tan, D.X.; Reiter, R.J. Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules, 2016, 21, 1442, DOI: 10.3390/molecules21111442 and references therein.

[19] Iuga, C.; Idaboy, J.R.A.; Russo, N. Antioxidant Activity of trans-Resveratrol toward Hydroxyl and Hydroperoxyl Radicals: A Quantum Chemical and Computational Kinetics Study. J Organomet Chem. 2012, 77, 3868. DOI: 10.1021/jo3002134

[20] Gomez, C.M.; Galano, A.; Idaboy, J.R.A. Piceatannol, a better peroxyl radical scavenger than resveratrol. RSC Adv. 2013, 3, 20209. DOI: 10.1039/C3RA42923G

[21] Wright, J.S.; Johnson, E.R.; DiLabio, G.A. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. J Am Chem Soc. 2001, 123, 1173. DOI: 10.1021/ja002455u

[22] Vafiadis, A.P.; Bakalbassis, E.G. A DFT study on the deprotonation antioxidant mechanistic step of ortho substituted phenolic cation radicals. Chem Phys, 2005, 316, 195. DOI: 10.1016/j.chemphys.2005.05.015

[23] Musialik, M.; Litwinienko, G. Acidity of Hydroxyl Groups: An Overlooked Influence on Antiradical Properties of Flavonoids. Org Lett, 2005, 7, 4952. DOI: 10.1021/jo802716v

[24] Zhao, Y. Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120, 215. DOI:10.1007/s00214-007-0310-x

[25] Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Chem. Phys. 2009, 113, 6378. DOI: 10.1021/jp810292n

[26] Michalik, M.; Lukes, V. The validation of quantum chemical lipophilicity prediction of alcohols. Acta Chim. Slov. 2016, 9, 89. DOI: 10.1515/acs-2016-0015

[27] Reed, E.D.; Winhold, F.; Curtiss, L.A. Intermolecular Interactions from a Natural Bond Orbital, Donor Acceptor Viewpoint. Chem. Rev. 1998, 88, 899. DOI: 10.1021/cr00088a005

[28] Gaussian 16, Revision B.01, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. et al. Gaussian, Inc., Wallingford CT, 2016.

[29] G. W. Burton, K. U. Ingold, Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc Chem Res, 1986, 19, 19. DOI: DOI: 10.1021/cr00088a005

Downloads

Dimension Citations

Published

2025-03-31

Issue

Section

Research Articles

How to Cite

Das, A., Bhuyan, P., Ganguly, M., & Guha, A. K. (2025). Quest For the Best Antioxidant Component Present in Aloe vera: A Theoretical Study. Multidisciplinary Research Journal, 1(1), 82-90. https://doi.org/10.63635/mrj.v1i1.9