Temporal Variation of Non-Methane Hydrocarbons in the Ambient Atmosphere of Tezpur Region of Assam

Authors

  • Barnali Koushik Department of Environmental Science, Tezpur University, Tezpur, Assam, 784028, India Author
  • Raza Rafiqul Hoque Department of Environmental Science, Tezpur University, Tezpur, Assam, 784028, India Author

DOI:

https://doi.org/10.63635/mrj.v1i3.105

Keywords:

NMHC, Temporal variations, Anthropogenic contribution, Reactivities

Abstract

The non-methane hydrocarbons (NMHC) in the atmosphere are important pollutants to study as they are precursors to several secondary pollutants including ozone. This study addressed the temporal variation of NMHC over Tezpur region of Assam. Continuous data of NMHC retrieved by GC-FID based analyzer for the year 2014 were analysed and have been reported in this study. The highest monthly mean NMHC concentrations of 355.0±128 ppb was found in the month of November. In addition to the source strength, atmospheric reactivity and dispersion played a crucial role in the concentration of NMHC in Tezpur region. While the lowest monthly mean NMHC concentration of 73.6±45 ppb was found in the month of February. The monthly polar plots showed that the sources affecting the NMHC concentration in Tezpur region were mostly local; but there was also long-range transport to the area in the month of March and April. The lowest weekly concentration of NMHC was observed on weekends due to lower anthropogenic activities like vehicular movement. The mean concentration of NMHC on Sunday is 143.6±88 ppb. The lowest diel concentrations of NMHC were observed during the afternoon 14:00 and 15:00 hours which were indicative of enhanced reactivity in the atmosphere and high atmospheric dispersion, and the peak NMHC concentration was observed during evening hours.

Downloads

Download data is not yet available.

References

[1] Shaw, S.L. The production of non-methane hydrocarbons by marine plankton. Doctoral dissertation, Massachusetts Institute of Technology2001.

[2] Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmospheric environment 2000, 34(12-14), 2063-2101.

[3] Sauvage, S.; Plaisance, H.; Locoge, N.; Wroblewski, A.; Coddeville, P.; Galloo, J.C. Long term measurement and source apportionment of non-methane hydrocarbons in three French rural areas. Atmospheric Environment 2009, 43(15), 2430-2441. https://doi.org/10.1016/j.atmosenv.2009.02.001.

[4] Highwood, E.J.; Shine, K.P.; Hurley, M.D.; Wallington, T.J. Estimation of direct radiative forcing due to non-methane hydrocarbons. Atmospheric Environment 1999, 33(5), 759-767. https://doi.org/10.1016/S1352-2310(98)00220-9.

[5] Sihra, K.; Hurley, M.D.; Shine, K.P.; Wallington, T.J. Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons. Journal of Geophysical Research: Atmospheres 2001, 106(D17), 20493-20505.

[6] Atkinson, R.; Arey, J. Atmospheric chemistry of biogenic organic compounds. Accounts of Chemical Research 1998, 31(9), 574-583. https://doi.org/10.1021/ar970143z.

[7] Tang, J.H.; Chu, K.W.; Chan, L.Y.; Chen, Y.J. Non–methane hydrocarbon emission profiles from printing and electronic industrial processes and its implications on the ambient atmosphere in the Pearl River Delta, South China. Atmospheric Pollution Research 2014, 5(1), 151-160. https://doi.org/10.5094/APR.2014.019.

[8] Grant, A.; Yates, E.L.; Simmonds, P.G.; Derwent, R.G.; Manning, A.J.; Young, D.; Shallcross, D.E.; O'Doherty, S. A five year record of high-frequency in situ measurements of non-methane hydrocarbons at Mace Head, Ireland. Atmospheric Measurement Techniques 2011, 4(5), 955-964. https://doi.org/10.5194/amt-4-955-2011.

[9] Mao, J.; Paulot, F.; Jacob, D.J.; Cohen, R.C.; Crounse, J.D.; Wennberg, P.O.; Keller, C.A.; Hudman, R.C.; Barkley, M.P.; Horowitz, L.W. Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry. Journal of Geophysical Research: Atmospheres 2013, 118(19), 11-256. https://doi.org/10.1002/jgrd.50817.

[10] Platt, S.M.; El Haddad, I.; Zardini, A.A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J.G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; Drinovec, L. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmospheric Chemistry and Physics 2013, 13(18), 9141-9158. https://doi.org/10.5194/acp-13-9141-2013.

[11] Poisson, N.; Kanakidou, M.; Crutzen, P.J. Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. Journal of Atmospheric Chemistry 2000, 36, 157-230.

[12] Sahu, L.K.; Lal, S. Distributions of C2–C5 NMHCs and related trace gases at a tropical urban site in India. Atmospheric Environment 2006, 40(5), 880-891. https://doi.org/10.1016/j.atmosenv.2005.10.021.

[13] RULE, P.R.H. Regulatory Impact Analyses for the Particulate Matter and Ozone National Ambient Air Quality Standards and Proposed Regional Haze Rule 1997.

[14] Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; Hamilton, J.F. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric chemistry and physics2009, 9(14), 5155-5236.

[15] Derwent, R.G.; Jenkin, M.E.; Utembe, S.R.; Shallcross, D.E.; Murrells, T.P.; Passant, N.R. Secondary organic aerosol formation from a large number of reactive man-made organic compounds. Science of the Total Environment 2010, 408(16), 3374-3381. https://doi.org/10.1016/j.scitotenv.2010.04.013.

[16] Ortega, A.M.; Hayes, P.L.; Peng, Z.; Palm, B.B.; Hu, W.; Day, D.A.; Li, R.; Cubison, M.J.; Brune, W.H.; Graus, M.; Warneke, C. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area. Atmospheric Chemistry and Physics 2016, 16(11), 7411-7433. https://doi.org/10.5194/acp-16-7411-2016.

[17] Ambient, W.H.O. Ambient (outdoor) air pollution. World Health Organization Fact Sheet2018, 08-05.

[18] Logue, J.M.; McKone, T.E.; Sherman, M.H.; Singer, B.C. Hazard assessment of chemical air contaminants measured in residences. Indoor air 2011, 21(2), 92-109.

[19] Glass, D.C.; Gray, C.N.; Jolley, D.J.; Gibbons, C.; Sim, M.R.; Fritschi, L.; Adams, G.G.; Bisby, J.A.; Manuell, R. Leukemia risk associated with low-level benzene exposure. Epidemiology 2003, 14(5), 569-577. https://doi.org/10.1097/01.ede.0000082001.05563.e0.

[20] Kampa, M.; Castanas, E. Human health effects of air pollution. Environmental pollution 2008, 151(2), 362-367. https://doi.org/10.1016/j.envpol.2007.06.012.

[21] Borbon, A.; Locoge, N.; Veillerot, M.; Galloo, J.C.; Guillermo, R. Characterisation of NMHCs in a French urban atmosphere: overview of the main sources. Science of the Total Environment 2002, 292(3), 177-191. https://doi.org/10.1016/S0048-9697(01)01106-8.

[22] Kirkeleit, J.; Riise, T.; Bråtveit, M.; Moen, B.E. Increased risk of acute myelogenous leukemia and multiple myeloma in a historical cohort of upstream petroleum workers exposed to crude oil. Cancer Causes & Control 2008, 19, 13-23. https://doi.org/10.1007/s10552-007-9065-x.

[23] Aakko-Saksa, P.T.; Rantanen-Kolehmainen, L.; Skytta, E. Ethanol, isobutanol, and biohydrocarbons as gasoline components in relation to gaseous emissions and particulate matter. Environmental Science & Technology 2014, 48(17), 10489-10496. https://doi.org/10.1021/es501381h.

[24] Pitts, J. N. Anthropogenic ozone, acids and mutagens: Half a century of Pandora’S No x. Research on chemical intermediates1993, 19, 251-298.

[25] Acosta Navarro, J.C.; Smolander, S.; Struthers, H.; Zorita, E.; Ekman, A.M.; Kaplan, J.O.; Guenther, A.; Arneth, A.; Riipinen, I. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium. Journal of Geophysical Research: Atmospheres 2014, 119(11), 6867-6885. https://doi.org/10.1002/2013JD021238.

[26] Arsene, C.; Bougatioti, A.; Mihalopoulos, N. Sources and variability of non-methane hydrocarbons in the Eastern Mediterranean. Global NEST Journal 2009, 11(3), 333-340.

[27] Guenther, A.; Geron, C.; Pierce, T.; Lamb, B.; Harley, P.; Fall, R. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmospheric Environment 2000, 34(12-14), 2205-2230. https://doi.org/10.1016/s1352-2310(99)00465-3.

[28] Schuetz, C.; Bogner, J.; Chanton, J.; Blake, D.; Morcet, M.; Kjeldsen, P. Comparative oxidation and net emissions of methane and selected non-methane organic compounds in landfill cover soils. Environmental science & technology 2003, 37(22), 5150-5158.

https://doi.org/10.1021/es034016b.

[29] Barlaz, M.A.; Green, R.B.; Chanton, J.P.; Goldsmith, C.D.; Hater, G.R. Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environmental science & technology 2004, 38(18), 4891-4899. https://doi.org/10.1021/es049605b.

[30] Scheutz, C.; Bogner, J.; Chanton, J.P.; Blake, D.; Morcet, M.; Aran, C.; Kjeldsen, P. Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a French landfill. Waste management 2008, 28(10), 1892-1908. https://doi.org/10.1016/j.wasman.2007.09.010.

[31] Bogner, J.E.; Chanton, J.P.; Blake, D.; Abichou, T.; Powelson, D. Effectiveness of a Florida landfill biocover for reduction of CH4 and NMHC emissions. Environmental science & technology 2010, 44(4), 1197-1203. https://doi.org/10.1021/es901796k.

[32] Barletta, B.; Meinardi, S.; Rowland, F.S.; Chan, C.Y.; Wang, X.; Zou, S.; Chan, L.Y.; Blake, D.R. Volatile organic compounds in 43 Chinese cities. Atmospheric Environment 2005, 39(32), 5979-5990. https://doi.org/10.1016/j.atmosenv.2005.06.029.

[33] Baker, A.K.; Beyersdorf, A.J.; Doezema, L.A.; Katzenstein, A.; Meinardi, S.; Simpson, I.J.; Blake, D.R.; Rowland, F.S. Measurements of nonmethane hydrocarbons in 28 United States cities. Atmospheric Environment 2008, 42(1), 170-182.

https://doi.org/10.1016/j.atmosenv.2007.09.007.

[34] Jaimes-Palomera, M.; Retama, A.; Elias-Castro, G.; Neria-Hernández, A.; Rivera-Hernández, O.; Velasco, E. Non-methane hydrocarbons in the atmosphere of Mexico City: Results of the 2012 ozone-season campaign. Atmospheric Environment 2016, 132, 258-275.

[35] Pandit, G.G.; Rao, A.M. Evaluation of auto exhaust contribution to atmospheric C2-C5 hydrocarbons at Deonar, Bombay. Atmospheric Environment. Part A. General Topics 1990, 24(4), 811-813.

[36] Liu, C.; Ma, Z.; Mu, Y.; Liu, J.; Zhang, C.; Zhang, Y.; Liu, P.; Zhang, H. The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China. Atmospheric Chemistry and Physics 2017, 17(17), 10633-10649.

[37] Badarinath, K.V.S.; Latha, K.M. Direct radiative forcing from black carbon aerosols over urban environment. Advances in Space Research 2006, 37(12), 2183-2188. https://doi.org/10.1016/j.asr.2005.10.034.

[38] Lal, S.; Sahu, L.K.; Venkataramani, S.; Mallik, C. Light non-methane hydrocarbons at two sites in the Indo-Gangetic Plain. Journal of Environmental Monitoring 2012, 14(4), 1158-1165. https://doi.org/10.1039/c2em10682e.

[39] Pandit, G.G.; Sahu, S.K.; Puranik, V.D. Distribution and source apportionment of atmospheric non–methane hydrocarbons in Mumbai, India. Atmospheric Pollution Research 2011, 2(2), 231-236. https://doi.org/10.5094/APR.2011.029.

[40] Sharma, G.; Sinha, B.; Pallavi, Hakkim, H.; Chandra, B.P.; Kumar, A.; Sinha, V. Gridded emissions of CO, NO x, SO2, CO2, NH3, HCl, CH4, PM2. 5, PM10, BC, and NMVOC from open municipal waste burning in India. Environmental science & technology 2019, 53(9), 4765-4774. https://doi.org/10.1021/acs.est.8b07076.

[41] Sarangi, T.; Naja, M.; Lal, S.; Venkataramani, S.; Bhardwaj, P.; Ojha, N.; Kumar, R.; Chandola, H.C. First observations of light non-methane hydrocarbons (C2–C5) over a high altitude site in the central Himalayas. Atmospheric Environment2016, 125, 450-460. https://doi.org/10.1016/j.atmosenv.2015.10.024.

[42] Nishanth, T.; Praseed, K.M.; Kumar, M.S.; Valsaraj, K.T. Observational study of surface O3, NOx, CH4 and total NMHCs at Kannur, India. Aerosol and Air Quality Research 2014, 14(3), 1074-1088. https://doi.org/10.4209/aaqr.2012.11.0323.

[43] Rao, A.M.; Pandit, G.G. Concentrations of C2–C5 hydrocarbons in atmospheric air at Deonar, Bombay, in relation to possible sources. Atmospheric Environment (1967) 1988, 22(2), 395-401. https://doi.org/10.1016/0004-6981(88)90045-5.

[44] Rao, A.M.; Pandit, G.G.; Sain, P.; Sharma, S.; Krishnamoorthy, T.M.; Nambi, K.S.V. Non-methane hydrocarbons in industrial locations of Bombay. Atmospheric Environment 1997, 31(7), 1077-1085.

[45] Kotnala, G., Sharma, S.K. and Mandal, T.K., 2020. Influence of vehicular emissions (NO, NO2, CO and NMHCs) on the mixing ratio of atmospheric ammonia (NH3) in Delhi, India. Archives of Environmental Contamination and Toxicology, 78(1), pp.79-85.

[46] Majumdar, D.; Gavane, A.G. Diurnal-, seasonal-and site-dependent variability in ground-level total non-methane hydrocarbon in Nagpur City of Central India. Asian Journal of Atmospheric Environment 2020, 14(1), 1-13. https://doi.org/10.5572/ajae.2020.14.1.001.

[47] Sahu, L.K.; Lal, S.; Venkataramani, S. Seasonality in the latitudinal distributions of NMHCs over Bay of Bengal. Atmospheric environment 2011, 45(14),.2356-2366. https://doi.org/10.1016/j.atmosenv.2011.02.021.

[48] Sahu, L. K.; Lal, S. Characterization of C 2− C 4 NMHCs distributions at a high altitude tropical site in India. Journal of atmospheric chemistry 2006, 54, 161-175. https://doi.org/10.1007/s10874-006-9023-0.

[49] Bhuyan, P.; Deka, P.; Prakash, A.; Balachandran, S.; & Hoque, R. R. Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environmental Pollution 2018, 234, 997-1010. https://doi.org/10.1016/j.envpol.2017.12.009.

[50] Ecotech. (2007). Environmental monitoring, Synspec alpha 115 user manual version 2.0, July 2007

[51] Wickham, H.; Wickham, H. Data analysis. Springer International Publishing2016, 89-201.

[52] Wilkinson, L. ggplot2: elegant graphics for data analysis by WICKHAM, H. 2011https://doi.org/10.1111/j.1541-0420.2011.01616.x.

[53] Carslaw, D. C.; Ropkins, K. Openair—an R package for air quality data analysis. Environmental Modelling & Software 2012, 27, 52-61. http://dx.doi.org/10.1016/j.envsoft.2011.09.008.

[54] Jobson, B. T.; Wu, Z.; Niki, H.; Barrie, L. A. Seasonal trends of isoprene, C2–C5 alkanes, and acetylene at a remote boreal site in Canada. Journal of Geophysical Research: Atmospheres 1994, 99(D1), 1589-1599. https://doi.org/10.1029/93JD00424.

[55] Klonecki, A.; Hess, P.; Emmons, L.; Smith, L.; Orlando, J.; Blake, D. Seasonal changes in the transport of pollutants into the Arctic troposphere‐model study. Journal of Geophysical Research: Atmospheres 2003, 108(D4). https://doi.org/10.1029/2002JD002199.

[56] Sarma, D. Eco-physiological analysis of net CO2 flux from a terrestrial ecosystem with special reference to Kaziranga National Park, Assam, India. 2018

[57] Deka, P.; Hoque, R. R. Chemical characterization of biomass fuel smoke particles of rural kitchens of South Asia. Atmospheric Environment 2015, 108, 125-132. http://dx.doi.org/10.1016/j.atmosenv.2015.02.076.

[58] Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; Guo, H. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment 2017, 579, 1000-1034. https://doi.org/10.1016/j.scitotenv.2016.11.025.

[59] Bora, J.; Bhuyan, P.; Deka, P.; Hoque, R.R. Exposure to Ambient Particulate Matter in a Class 1 Urban Agglomeration City of Mid Brahmaputra Valley. Multidisciplinary Research Journal 2025, 3-13.

[60] Figueroa, J.; Valdes, H.; Vilches, J.; Schmidt, W.; Valencia, F.; Torres, V.; Diaz-Robles, L.; Muñoz, P.; Letelier, V.; Morales, V.; Bustamante, M. Comparative Analysis of Gas Emissions from Ecokiln and Artisanal Brick Kiln during the Artisanal Firing of Bricks. Sustainability 2024, 16(3), 1302. https://doi.org/10.3390/su16031302.

[61] Garcia, J.; Beyne-Masclet, S.; Mouvier, G.; Masclet, P. Emissions of volatile organic compounds by coal-fired power stations. Atmospheric Environment. Part A. General Topics 1992, 26(9), 1589-1597. https://doi.org/10.1016/0960-1686(92)90059-T.

[62] Wang, R., Wu, T., Dai, W., Liu, H., Zhao, J., Wang, X., Huang, F., Wang, Z. and Shi, C. Effects of straw return on C2–C5 non-methane hydrocarbon (NMHC) emissions from agricultural soils. Atmospheric Environment2015, 100, 210-217. https://doi.org/10.1016/j.atmosenv.2014.10.051.

[63] Bhuyan, P.; Barman, N.; Bora, J.; Daimari, R.; Deka, P.; Hoque, R. R. Attributes of aerosol bound water soluble ions and carbon, and their relationships with AOD over the Brahmaputra Valley. Atmospheric Environment 2016, 142, 194-209.

[64] Deka, J.; Baul, N.; Bharali, P.; Sarma, K. P.; Hoque, R. R. Soil PAHs against varied land use of a small city (Tezpur) of middle Brahmaputra Valley: seasonality, sources, and long-range transport. Environmental Monitoring and Assessment 2020, 192, 1-14. https://doi.org/10.1007/s10661-020-08296-0.

[65] Ommi, A.; Emami, F.; Zíková, N.; Hopke, P. K.; Begum, B. A. Trajectory-based models and remote sensing for biomass burning assessment in Bangladesh. Aerosol and Air Quality Research 2017, 17(2), 465-475. https://doi.org/10.4209/aaqr.2016.07.0304.

[66] Rahman, M. M.; Begum, B. A.; Hopke, P. K.; Nahar, K.; Thurston, G. D. Assessing the PM2. 5 impact of biomass combustion in megacity Dhaka, Bangladesh. Environmental Pollution 2020, 264, 114798. https://doi.org/10.1016/j.envpol.2020.114798.

[67] Cleveland, W. S.; Graedel, T. E.; Kleiner, B.; Warner, J. L. Sunday and workday variations in photochemical air pollutants in New Jersey and New York. Science 1974, 186(4168), 1037-1038. https://doi.org/10.1126/science.186.4168.1037.

[68] Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Science of the Total Environment 2020, 735, 139542. https://doi.org/10.1016/j.scitotenv.2020.139542.

[69] Wolff, G. T.; Kahlbaum, D. F.; Heuss, J. M. The vanishing ozone weekday/weekend effect. Journal of the Air & Waste Management Association 2013, 63(3), 292-299. https://doi.org/10.1080/10962247.2012.749312.

[70] Rahman, W.; Beig, G.; Barman, N.; Hopke, P. K.; Hoque, R. R. Ambient ozone over mid-Brahmaputra Valley, India: effects of local emissions and atmospheric transport on the photostationary state. Environmental monitoring and assessment 2021, 193(12), 790. https://doi.org/10.1007/s10661-021-09572-3.

[71] Fujita, E. M.; Stockwell, W. R.; Campbell, D. E.; Keislar, R. E.; Lawson, D. R. Evolution of the magnitude and spatial extent of the weekend ozone effect in California’s South Coast Air Basin, 1981–2000. Journal of the Air & Waste Management Association 2003, 53(7), 802-815. https://doi.org/10.1080/10473289.2003.10466225.

[72] Liu, W.T.; Chen, S.P.; Chang, C.C.; Ou-Yang, C.F.; Liao, W.C.; Su, Y.C.; Wu, Y.C.; Wang, C.H.; Wang, J.L. Assessment of carbon monoxide (CO) adjusted non-methane hydrocarbon (NMHC) emissions of a motor fleet–A long tunnel study. Atmospheric Environment 2014, 89, 403-414. http://dx.doi.org/10.1016/j.atmosenv.2014.01.002.

[73] Chang, S. C.; Lin, T. H.; Lee, C. T. On-road emission factors from light-duty vehicles measured in Hsuehshan Tunnel (12.9 km), the longest tunnel in Asia. Environmental monitoring and assessment 2009, 153, 187-200. https://doi.org/10.1007/s10661-008-0348-9.

[74] Scheff, P. A.; Wadden, R. A. Receptor modeling of volatile organic compounds. 1. Emission inventory and validation. Environmental science & technology 1993, 27(4), 617-625. https://doi.org/10.1021/es00041a005.

[75] Greiner, N. R. Hydroxyl‐radical kinetics by kinetic spectroscopy. I. Reactions with H2, CO, and CH4 at 300 K. The Journal of Chemical Physics 1967, 46(7), 2795-2799.

https://doi.org/10.1063/1.1841115.

[76] Stedman, D. H.; Steffenson, D.; Niki, H. The reaction between active hydrogen and Cl2-evidence for the participation of vibrationally excited H2. Chemical Physics Letters 1970, 7(2), 173-174. https://doi.org/10.1016/0009-2614(70)80278-0.

[77] Morikawa, T.; Wakamatsu, S.; Tanaka, M.; Uno, I.; Kamiura, T.; Maeda, T. C2–C5 hydrocarbon concentrations in central Osaka. Atmospheric Environment 1998, 32(11), 2007-2016. https://doi.org/10.1016/S1352-2310(97)00509-8.

Downloads

Statistics
Abstract Display: 327
PDF Downloads: 149
Dimension Badge

Published

2025-07-31

Issue

Section

Research Articles

How to Cite

Barnali, K., & Raza, R. H. (2025). Temporal Variation of Non-Methane Hydrocarbons in the Ambient Atmosphere of Tezpur Region of Assam. Multidisciplinary Research Journal, 1(3), 25-38. https://doi.org/10.63635/mrj.v1i3.105