Effect of Pour Point Depressant (PPD) for Efficient Transport of Waxy Crude Oil: A Critical Review

Authors

  • Rupam Kumar Bora Cotton University, Guwahati, Assam, INDIA-781001 Author

DOI:

https://doi.org/10.63635/mrj.v1i4.189

Keywords:

Pour Point Depressant, waxy crude oil, Polymer, Additives

Abstract

The transportation of waxy crude oils is often challenged by high pour points and wax deposition, which significantly increase pipeline viscosity, energy consumption, and operational costs. Pour point depressants (PPDs) have emerged as effective chemical additives to modify wax crystallization behavior, reduce pour point, and improve crude oil flowability. In this study, the role of PPDs in enhancing pipeline transportation of waxy crude oil is discussed with emphasis on their mechanisms of action, such as adsorption on wax crystal surfaces, inhibition of crystal growth, and modification of crystal morphology. Various classes of PPDs, including ethylene–vinyl acetate copolymers, polymethacrylates, and comb-like copolymers, are evaluated for their efficiency in lowering pour point and mitigating wax deposition. Laboratory assessments and field applications demonstrate that optimized PPD formulations can reduce pour points by more than 10-20°C, ensuring uninterrupted transportation under sub-ambient conditions. This literature review summarizes the importance of molecular structure, crude oil composition, and operating parameters in determining PPD performance, providing insights for the design of next-generation flow assurance additives.

Downloads

Download data is not yet available.

Author Biography

  • Rupam Kumar Bora, Cotton University, Guwahati, Assam, INDIA-781001

    Cotton University, Guwahati, Assam, INDIA-781001

References

[1] Anisuzzaman, S. M.; Fong, Y. W.; Madsah, M. A review on various techniques and recent advances in polymeric additives to mitigate wax problems in crude oil. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2018, 48(1), 53-64. ISSN: 2289-7879

[2] Al-Sabagh, A. M.; Khalil, T. M.; Sabaa, M. W.; Khidr, T. T.; Saad, G. R. Poly (n-alkyl itaconate-co-vinyl acetate) as pour point depressants for lube oil in relation to rheological flow properties. Journal of dispersion science and technology, 2012, 33(11), 1649-1660.https://doi.org/10.1080/01932691.2011.620867

[3] Chen, G.; Yuan, W.; Zhang, F.; Gu, X.; Du, W.; Zhang, J.; Li, J.; Qu, C. Application of polymethacrylate from waste organic glass as a pour point depressor in heavy crude oil. Journal of Petroleum Science and Engineering, 2018, 165, 1049-1053.https://doi.org/10.1016/j.petrol.2017.12.041

[4] Bello, O. O.; Fasesan, S. O.; Teodoriu, C.; Reinicke, K. M. An evaluation of the performance of selected wax inhibitors on paraffin deposition of Nigerian crude oils. Petroleum science and technology, 2006, 24(2), 195-206.https://doi.org/10.1081/LFT-200044504

[5] Yang, F.; Cheng, L.; Liu, H.; Yao, B.; Li, C.; Sun, G.; Zhao, Y. Comb-like polyoctadecyl acrylate (POA) wax inhibitor triggers the formation of heterogeneous waxy oil gel deposits in a cylindrical couette device. Energy & Fuels, 2018, 32(1), 373-383.https://doi.org/10.1021/acs.energyfuels.7b03416

[6] Chen, Z.; Wang, X.; Zhang, H.; Yang, C.; Shan, H. A study on the interaction of crude oil waxes with polyacrylate pour point depressants by Monte Carlo simulation. Petroleum science and technology, 2014, 32(17), 2151-2157.https://doi.org/10.1080/10916466.2013.769571

[7] Ilyin, S.; Arinina, M.; Polyakova, M.; Bondarenko, G.; Konstantinov, I.; Kulichikhin, V.; Malkin, A. Asphaltenes in heavy crude oil: Designation, precipitation, solutions, and effects on viscosity. Journal of Petroleum Science and Engineering, 2016, 147, 211-217.https://doi.org/10.1016/j.petrol.2016.06.020

[8] Atta, A. M.; El-Ghazawy, R. A.; Morsy, F. A.; Hebishy, A.; Elmorsy, A. Adsorption of polymeric additives based on vinyl acetate copolymers as wax dispersant and its relevance to polymer crystallization mechanisms. Journal of Chemistry, 2015.https://doi.org/10.1155/2015/683109

[9] Hosseinzadeh-Bandbafha, H.; Tabatabaei, M.; Aghbashlo, M.; Khanali, M.; Demirbas, A. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Conversion and Management, 2018, 174, 579-614.https://doi.org/10.1016/j.enconman.2018.08.050

[10] Yang, F.; Zhao, Y.; Sjöblom, J.; Li, C.; Paso, K. G. Polymeric wax inhibitors and pour point depressants for waxy crude oils: a critical review. Journal of Dispersion Science and Technology, 2015, 36(2), 213-225.https://doi.org/10.1080/01932691.2014.901917

[11] Atta, A. M.; Al-Shafy, H. I.; Ismail, E. A. Influence of ethylene acrylic alkyl ester copolymer wax dispersants on the rhological behavior of Egyptian crude oil. Journal of dispersion science and technology, 2011, 32(9), 1296-1305.https://doi.org/10.1080/01932691.2010.505806

[12] Zimmer, J. C.; Davis, G. H. B.; Frolich, P. K., Pennsylvania State College, Mineral Industry Experiment Station, Bulletin 12, pages 57-63, 1933.

[13] Bruson, H. A., “Composition of matter and process,” U.S. Patent No. 2,091,627 (filed 1934, patented 1937)

[14] Gavlin, G.; Swire, E. A.; Jones, S. P. Pour point depression of lubricating oils. Industrial & Engineering Chemistry, 1953, 45(10), 2327-2335.https://doi.org/10.1021/ie50526a050

[15] Deshmukh, S.; Bharambe, D. P. Synthesis of polymeric pour point depressants for Nada crude oil (Gujarat, India) and its impact on oil rheology. Fuel processing technology, 2008, 89(3), 227-233.https://doi.org/10.1016/j.fuproc.2007.10.010

[16] Borthakur, A.; Chanda, D.; Dutta Choudhury, S. R.; Rao, K. V.; Subrahmanyam, B. Alkyl fumerate-vinyl acetate copolymer as flow improver for high waxy Indian crude oils. Energy & fuels, 1996, 10(3), 844-848.https://doi.org/10.1021/ef950237u

[17] Ke-Jian, L.; Yuchun, Z. A study on alcohols mixture esterified copolymer of maleic anhydride with mixed olefins, acrylic alkyl ester and styrene as pour-point depressant for diesels. Petroleum science and technology, 1999, 17(1-2), 51-56.https://doi.org/10.1080/10916469908949705

[18] He, C.; Ding, Y.; Chen, J.; Wang, F.; Gao, C.; Zhang, S.; Yang, M. Influence of the nano-hybrid pour point depressant on flow properties of waxy crude oil. Fuel, 2016, 167, 40-48.https://doi.org/10.1016/j.fuel.2015.11.031

[19] Sadiku-Agboola, O.; Sadiku, R. E.; Adegbola, A. T.; Biotidara, O. F. Rheological properties of polymers: structure and morphology of molten polymer blends. Materials Sciences and Applications, 2011, 2, 30-41. doi: https://10.4236/msa.2011.21005

[20] Al-Sabagh, A. M.; Khidr, T. T.; Moustafa, H. Y.; Mishrif, M. R.; Al-Damasy, M. H. Synergistic effect between surfactants and polyacrylates-maleicanhydride copolymers to improve the flow properties of waxy crude oil. Journal of Dispersion Science and Technology, 2017, 38(7), 1055-1062.https://doi.org/10.1080/01932691.2016.1219952

[21] Taraneh, J. B.; Rahmatollah, G.; Hassan, A.; Alireza, D. Effect of wax inhibitors on pour point and rheological properties of Iranian waxy crude oil. Fuel processing technology, 2008, 89(10), 973-977.https://doi.org/10.1016/j.fuproc.2008.03.013

[22] Hoffmann, R.; Amundsen, L. Influence of wax inhibitor on fluid and deposit properties. Journal of Petroleum Science and Engineering, 2013, 107, 12-17.https://doi.org/10.1016/j.petrol.2013.04.009

[23] El Mehbad, N. Efficiency of N-Decyl-N-benzyl-N-methylglycine and N-Dodecyl-N-benzyl-N-methylglycine surfactants for flow improvers and pour point depressants. Journal of Molecular Liquids, 2017, 229, 609-613.https://doi.org/10.1016/j.molliq.2016.12.075

[24] Yang, T.; Yin, S.; Xie, M.; Chen, F.; Su, B.; Lin, H.; Xue, Y.; Han, S. Effects of N-containing pour point depressants on the cold flow properties of diesel fuel. Fuel, 2020, 272, 117666.https://doi.org/10.1016/j.fuel.2020.117666

[25] Leng, L.; Li, W.; Li, H.; Jiang, S.; Zhou, W. Cold flow properties of biodiesel and the improvement methods: a review. Energy & Fuels, 2020, 34(9), 10364-10383.https://doi.org/10.1021/acs.energyfuels.0c01912

[26] Li, N., Mao, G., Wu, W., & Liu, Y. Effect evaluation of ethylene vinyl acetate/nano-montmorillonite pour-point depressant on improving the flow properties of model oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 296-303.https://doi.org/10.1016/j.colsurfa.2018.06.065

[27] Deshmukh, S.; Bharambe, D. P. The improvement of low temperature flow characteristics of waxy crude oil using multifunctional polymeric additives. Petroleum science and technology, 2014, 32(11), 1333-1339.https://doi.org/10.1080/10916466.2012.655873

[28] Ashbaugh, H. S.; Guo, X.; Schwahn, D.; Prud'homme, R. K.; Richter, D.; Fetters, L. J. Interaction of paraffin wax gels with ethylene/vinyl acetate co-polymers. Energy & fuels, 2005, 19(1), 138-144.https://doi.org/10.1021/ef049910i

[29] Jing, G.; Sun, Z.; Tu, Z.; Bian, X.; Liang, Y. Influence of different vinyl acetate contents on the properties of the copolymer of ethylene and vinyl acetate/modified nano-SiO2 composite pour-point depressant. Energy & Fuels, 2017, 31(6), 5854-5859.https://doi.org/10.1021/acs.energyfuels.7b00189

[30] Machado, A. L.; Lucas, E. F.; González, G. Poly (ethylene-co-vinyl acetate)(EVA) as wax inhibitor of a Brazilian crude oil: oil viscosity, pour point and phase behavior of organic solutions. Journal of Petroleum Science and Engineering, 2001, 32(2-4), 159-165.https://doi.org/10.1016/S0920-4105(01)00158-9

[31] Hao, L. Z.; Al-Salim, H. S.; & Ridzuan, N. A Review of the Mechanism and Role of Wax Inhibitors in the Wax Deposition and Precipitation. Pertanika Journal of Science & Technology, 2019, 27(1). ISSN: 0128-7680 e-ISSN: 2231-8526

[32] Yu, T.; Wang, J.; Jin, J. Preparation of polymeric pour point depressants for shale oil. Energy sources, 2006, 28(8), 757-762.https://doi.org/10.1080/009083190927101

[33] Admiral, A.; Abdullah, M. K.; Ariffin, A. Evaluation of emulsified acrylate polymer and its pour point depressant performance. Procedia Chemistry, 2016, 19, 319-326.https://doi.org/10.1016/j.proche.2016.03.018

[34] Florea, M.; Catrinoiu, D.; Luca, P.; Balliu, S. The influence of chemical composition on the pour‐point depressant properties of methacrylate copolymers used as additives for lubricating oils. Lubrication Science, 1999, 12(1), 31-44.https://doi.org/10.1002/ls.3010120103

[35] Subrahmanyam, B.; Baruah, S. D.; Rahman, M.; Laskar, N. C.; Mazumder, R. K. Studies on high conversion polymerization of n-alkyl acrylates. Polymer, 1994, 35(4), 862-865.https://doi.org/10.1016/0032-3861(94)90887-7

[36] Yao, B.; Li, C.; Yang, F.; Sjöblom, J.; Zhang, Y.; Norrman, J.; Paso, K.; Xiao, Z. Organically modified nano-clay facilitates pour point depressing activity of polyoctadecylacrylate. 2016,Fuel, 166, 96-105.https://doi.org/10.1016/j.fuel.2015.10.114

[37] Ashbaugh, H. S.; Fetters, L. J.; Adamson, D. H.; Prud’homme, R. K. Flow improvement of waxy oils mediated by self-aggregating partially crystallizable diblock copolymers. Journal of Rheology, 2002, 46(4), 763-776.https://doi.org/10.1122/1.1485280

[38] Leube, W.; Monkenbusch, M.; Schneiders, D.; Richter, D.; Adamson, D.; Fetters, L.; Dounis, P. Lovegrove, R. Wax-crystal modification for fuel oils by self-aggregating partially crystallizable hydrocarbon block copolymers. Energy & fuels, 2000, 14(2), 419-430.https://doi.org/10.1021/ef9901544

[39] Sun, Z.; Jing, G.; Tu, Z. Effect of modified nano-silica/EVA on flow behavior and wax crystallization of model oils with different wax contents. Journal of Dispersion Science and Technology, 2018, 39(1), 71-76.https://doi.org/10.1080/01932691.2017.1295869

[40] Zhen, Z.; Jing, G.; Sun, Z.; Zheng, C.; Li, W. The development and evaluation of novel nano-pour point depressant. Petroleum Science and Technology, 2018, 36(3), 208-214.https://doi.org/10.1080/10916466.2017.1413388

[41] Yang, F.; Yao, B.; Li, C.; Sun, G.; Ma, X. Oil dispersible polymethylsilsesquioxane (PMSQ) microspheres improve the flow behavior of waxy crude oil through spacial hindrance effect. Fuel, 2017, 199, 4-13.https://doi.org/10.1016/j.fuel.2017.02.062

[42] Bassane, J. F. P.; Sad, C. M.; Neto, D. M.; Santos, F. D.; Silva, M.; Tozzi, F. C.; Filgueiras, P. R.; Castro, E. V. R.; Romao, W.; Santos, M. F. P.; Silva, J. O. R.; Lacerda Jr, V. Study of the effect of temperature and gas condensate addition on the viscosity of heavy oils. Journal of Petroleum Science and Engineering, 2016, 142, 163-169. https://doi.org/10.1016/j.petrol.2016.02.006

[43] Hosseinipour, A.; Japper-Jaafar, A. B.; Yusup, S. The effect of CO2 on wax appearance temperature of crude oils. Procedia engineering, 2016, 148, 1022-1029.https://doi.org/10.1016/j.proeng.2016.06.580

[44] Kelland, M. A. Production chemicals for the oil and gas industry. CRC press, 2014.https://doi.org/10.1201/9781420092974

[45] Naiya, T. K.; Banerjee, S.; Kumar, R.; Mandal, A. Heavy crude oil rheology improvement using naturally extracted surfactant. In SPE Oil & Gas India Conference and Exhibition. Society of Petroleum Engineers, 2015.https://doi.org/10.2118/178133-MS

[46] Chen, G.; Bai, Y.; Zhang, J.; Yuan, W.; Song, H.; Jeje, A. Synthesis of new flow improvers from canola oil and application to waxy crude oil. Petroleum Science and Technology, 2016, 34(14), 1285-1290.https://doi.org/10.1080/10916466.2016.1198804

[47] Azeem, A.; Kumar, R.; Pal, B.; Naiya, T. K. Use of novel pour point depressant synthesized from vegetable oil for waxy crude oil. Petroleum Science and Technology, 2020, 38(3), 185-193.https://doi.org/10.1080/10916466.2019.1697291

[48] El‐Ghazawy, R. A.; Farag, R. K. Synthesis and characterization of novel pour point depressants based on maleic anhydride‐alkyl acrylates terpolymers. Journal of applied polymer science, 2010, 115(1), 72-78.https://doi.org/10.1002/app.30609

[49] Xu, J.; Jiang, H.; Li, T.; Wei, X.; Wang, T.; Huang, J.; Wang, W.; Smith, A.L.; Wang, J.; Zhang, R.; Xu, Y. Effect of comb-type copolymers with various pendants on flow ability of heavy crude oil. Industrial & Engineering Chemistry Research, 2015, 54(19), 5204-5212.https://doi.org/10.1021/acs.iecr.5b00674

[50] Zhao, H.; Xu, J.; Li, T.; Wang, T.; Wei, X.; Wang, J.; Xu, Y.; Li, L. Guo, X. Effect of heteroaromatic pendants in comb copolymers on paraffin crystallization and cold flow ability of crude oil. Energy & Fuels, 2016, 30(7), 5398-5403.https://doi.org/10.1021/acs.energyfuels.6b00451

[51] Kok, M. V. The effect of pour point depressant on the flow behavior of crude oils. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(2), 167-172.https://doi.org/10.1080/15567036.2010.529573

[52] Azim, A. A.; Nasser, A. M.; Ahmed, N. S.; El Kafrawy, A. F.; Kamal, R. S. Multifunctional additives viscosity index improvers, pour point depressants and dispersants for lube oil. Petroleum Science and Technology, 2009, 27(1), 20-32.https://doi.org/10.1080/10916460701434621

[53] El‐Gamal, I. M.; Ghuiba, F. M.; El‐Batanoney, M. H.; Gobiel, S. Synthesis and evaluation of acrylate polymers for improving flow properties of waxy crudes. Journal of Applied Polymer Science, 1994, 52(1), 9-19.https://doi.org/10.1002/app.1994.070520102

[54] Chanda, D.; Sarmah, A.; Borthakur, A.; Rao, K. V.; Subrahmanyam, B.; Das, H. C. Combined effect of asphaltenes and flow improvers on the rheological behaviour of Indian waxy crude oil. Fuel, 1998, 77(11), 1163-1167.https://doi.org/10.1016/S0016-2361(98)00029-5

[55] Xu, J.; Xing, S.; Qian, H.; Chen, S.; Wei, X.; Zhang, R.; Li, L. and Guo, X.; 2013. Effect of polar/nonpolar groups in comb-type copolymers on cold flowability and paraffin crystallization of waxy oils. Fuel, 2013, 103, 600-605.https://doi.org/10.1016/j.fuel.2012.06.027

[56] Yang, F.; Xiao, Z.; Yao, B.; Li, C.; Wang, L.; Shi, X.; Sun, G. and Yan, K.; 2016. Influences of different functional groups on the performance of polyoctadecyl acrylate pour point depressant. Petroleum Science and Technology, 2016, 34(20), 1712-1719.https://doi.org/10.1080/10916466.2016.1212211

[57] Ren, Y.; Chen, Z.; Du, H.; Fang, L.; Zhang, X. Preparation and evaluation of modified ethylene–vinyl acetate copolymer as pour point depressant and flow improver for jianghan crude oil. Industrial & Engineering Chemistry Research, 2017, 56(39), 11161-11166.https://doi.org/10.1021/acs.iecr.7b02929

[58] Fu, X.; Zhu, L.; He, B.; Zhu, L. Influence of Monomer Ratio on the Performance of Poly (octadecyl acrylate-co-styrene) as Pour-Point Depressants. Energy & Fuels, 2020, 34(6), 6791-6798.https://doi.org/10.1021/acs.energyfuels.0c00174

[59] Alves, B. F.; Pereira, P. H.; Rita de Cássia, P. N.; Lucas, E. F. Influence of solvent solubility parameter on the performance of EVA copolymers as pour point modifiers of waxy model-systems. Fuel, 2019, 258, 116196.https://doi.org/10.1016/j.fuel.2019.116196

[60] Borthakur, A.; Laskar, N. C.; Mazumdar, R. K.; Rao, K. V.; Subrahmanyam, B. Synthesis and evaluation of alkyl fumarate–vinyl acetate copolymers in combination with alkyl acrylates as flow improvers for Borholla crude oil. Journal of Chemical Technology & Biotechnology: International Research in Process,Environmental AND Clean Technology, 1995, 62(1), 75-80.https://doi.org/10.1002/jctb.280620112

[61] Soni, H. P.; Bharambe, D. P.; Nagar, A. Synthesis of chemical additives and their effect on Akholjuni crude oil (Gujarat, India), Indian journal of chemical technology,2005, 12, 55-61. Print ISSN: 0971-457X, Online ISSN (eISSN): 0975-0991

[62] Deshmukh, S.; Bharambe, D. Evaluation of effect of polymeric pour point depressant additives on Indian waxy crude oil. Petroleum Science and Technology, 2009, 27(18), 2097-2108.https://doi.org/10.1080/10916460802686608

[63] Wang, J. S.; Matyjaszewski, K. " Living"/controlled radical polymerization. Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules, 1995, 28(22), 7572-7573.https://doi.org/10.1021/ma00126a041

[64] Kumar, A.; Behera, B.; Thakre, G. D.; Ray, S. S. Covalently grafted graphene oxide/poly (C n-acrylate) nanocomposites by surface-initiated ATRP: an efficient antifriction, antiwear, and pour-point-depressant lubricating additive in oil media. Industrial & Engineering flowrch, 2016, 55(31), 8491-8500.https://doi.org/10.1021/acs.iecr.6b00848

[65] Savoji, M. T.; Zhao, D.; Muisener, R. J.; Schimossek, K.; Schoeller, K.; Lodge, T. P.; Hillmyer, M. A. Poly (alkyl methacrylate)-grafted polyolefins as viscosity modifiers for engine oil: A new mechanism for improved performance. Industrial & Engineering Chemistry Research, 2018, 57(6), 1840-1850.https://doi.org/10.1021/acs.iecr.7b04634

[66] Moriceau, G.; Tanaka, J.; Lester, D.; Pappas, G. S.; Cook, A. B.; O’Hora, P.; Winn, J.; Smith, T.; Perrier, S. Influence of grafting density and distribution on material properties using well-defined alkyl functional poly (styrene-co-maleic anhydride) architectures synthesized by RAFT. Macromolecules, 2019, 52(4), 1469-1478.https://doi.org/10.1021/acs.macromol.8b02231

[67] Yao, Z.; Zhang, J. S.; Chen, M. L.; Li, B. J.; Lu, Y. Y.; Cao, K. Preparation of well‐defined block copolymer having one polystyrene segment and another poly (styrene‐alt‐maleic anhydride) segment with RAFT polymerization. Journal of Applied Polymer Science, 2011, 121(3), 1740-1746.https://doi.org/10.1002/app.33816

[68] Cao, K.; Wei, X. X.; Li, B. J.; Zhang, J. S.; Yao, Z. Study of the influence of imidization degree of poly (styrene-co-octadecyl maleimide) as waxy crude oil flow improvers. Energy & fuels, 2013, 27(2), 640-645.https://doi.org/10.1021/ef301336n

[69] Yao, B.; Mu, Z.; Li, C.; Yang, F.; Zhang, X. Effective flow improving agents for waxy crude oil. Petroleum Science and Technology, 2017, 35(17), 1775-1783.https://doi.org/10.1080/10916466.2017.1375947

[70] Moriceau, G.; Lester, D.; Pappas, G. S.; O’Hora, P.; Winn, J.; Smith, T.; Perrier, S. Well-defined alkyl functional poly (styrene-co-maleic anhydride) architectures as pour point and viscosity modifiers for lubricating oil. Energy & Fuels, 2019, 33(8), 7257-7264.https://doi.org/10.1021/acs.energyfuels.9b01470

[71] Ashbaugh, H. S.; Radulescu, A.; Prud'Homme, R. K.; Schwahn, D.; Richter, D.; Fetters, L. J. Interactionof paraffin wax gels with random crystalline/amorphoushydrocarboncopolymers. Macromolecules, 2002, 35(18), 7044-7053.https://doi.org/10.1021/ma0204047

[72] El‐Gamal, I. M.; Gobiel, S. Synthesis and evaluation of poly‐α‐olefins for improving the flow properties of gas oil. Journal of applied polymer science, 1996, 61(8), 1265-1272.https://doi.org/10.1002/(SICI)1097-4628(19960822)61:8<1265::AID-APP5>3.0.CO;2-I

[73] Yao, B.; Li, C.; Yang, F.; Zhang, Y.; Xiao, Z.; Sun, G. Structural properties of gelled Changqing waxy crude oil benefitted with nanocomposite pour point depressant. Fuel, 2016, 184, 544-554.https://doi.org/10.1016/j.fuel.2016.07.056

[74] Chen, G.; Li, Y.; Zhao, W.; Qu, K.; Ning, Y.; Zhang, J. Investigation of cyclohexanone pentaerythritol ketal as a clean flow improver for crude oil. Fuel Processing Technology, 2015, 133, 64-68.https://doi.org/10.1016/j.fuproc.2014.12.029

[75] Oliveira, L. M.; Nunes, R. C.; Melo, I. C.; Ribeiro, Y. L.; Reis, L. G.; Dias, J. C.; Guimaraes, R. C. L.; Lucas, E. F. Evaluation of the correlation between wax type and structure/behavior of the pour point depressant. Fuel Processing Technology, 2016, 149, 268-274.https://doi.org/10.1016/j.fuproc.2016.04.024

[76] Gu, X. F.; Ma, Y.; Chen, G. Preparation and evaluation of polymeric pour point depressant for crude oil. Advanced Materials Research, 2012, 524, 1706-1709.https://doi.org/10.4028/www.scientific.net/AMR.524-527.1706

[77] Fang, L.; Zhang, X.; Ma, J.; Zhang, B. Investigation into a pour point depressant for Shengli crude oil. Industrial & engineering chemistry research, 2012, 51(36), 11605-11612.https://doi.org/10.1021/ie301018r

[78] Yan, F., Huang, Z., Li, Q., Xu, S., Nie, C., Xia, X., & Yang, F. Preparation and Performance Evaluation of a New Type of Polyethylene-vinyl Acetate/Polystyrene Microsphere Composite Pour Point Depressant for Waxy Crude Oil. ACS omega, 2024, 9(28), 30873-30883.https://doi.org/10.1021/acsomega.4c03728

[79] Wang, F.; Zhang, D.; Ding, Y.; Zhang, L.; Yang, M.; Jiang, B.; Zhang, S.; AIMu, Y.; Liu, G. W.; Zhi, S.; Huo, L. F.; Ouyang, X.; Li, L. (2011). The effect of nanohybrid materials on the pour-point and viscosity depressing of waxy crude oil. Chinese science bulletin, 2011, 56(1), 14-1https://doi.org/10.1007/s11434-010-4174-4

[80] Al-Yaari, M. Paraffin wax deposition: mitigation and removal techniques. In SPE Saudi Arabia section Young Professionals Technical Symposium. Society of Petroleum Engineers, 2011.https://doi.org/10.2118/155412-MS

[81] Moad, G.; Rizzardo, E.; Thang, S. H. RAFT polymerization and some of its applications. Chemistry–An Asian Journal, 2013, 8(8), 1634-1644.https://doi.org/10.1002/asia.201300262

[82] Xu, G.; Xue, Y.; Zhao, Z.; Lian, X.; Lin, H.; Han, S. Influence of poly (methacrylate-co-maleic anhydride) pour point depressant with various pendants on low-temperature flowability of diesel fuel. Fuel, 2018, 216, 898-907.https://doi.org/10.1016/j.fuel.2017.06.126

[83] Rogel, E.; Ovalles, C.; Vien, J.; Moir, M. Asphaltene characterization of paraffinic crude oils. Fuel, 2016, 178, 71-76.https://doi.org/10.1016/j.fuel.2016.03.030

Downloads

Statistics
Abstract Display: 64
PDF Downloads: 38
Dimension Badge

Published

2025-12-28

Issue

Section

Review Articles

How to Cite

Bora, R. K. (2025). Effect of Pour Point Depressant (PPD) for Efficient Transport of Waxy Crude Oil: A Critical Review. Multidisciplinary Research Journal, 1(4), 38-60. https://doi.org/10.63635/mrj.v1i4.189