Nano-composites based on Chitin for the Removal of Heavy Metals from Wastewater: A Mini Review

Authors

DOI:

https://doi.org/10.63635/mrj.v1i2.28

Keywords:

Chitin, nanocomposites, Toxic effects, Heavy metals, Wastewater treatment

Abstract

Water pollution, mostly due to industrial discharge, is considered to be one of the significant challenges globally. There are various industries like leather tanning, electroplating, textile and dyeing units which heavily contribute to the pollution of aquatic system by heavy metals. These heavy metals being non-biodegradable and toxic assemble in the living beings, leading to severe health issues and damage to the environment. Among various water treatment mechanisms, adsorption is considered as one of the most effective ways to treat waste water, offering advantages such as simple design, non-toxicity, cost effectiveness, and better efficiency in discarding pollutants in spite of very low concentrations. In thepast, natural polymer based composites for adsorption process has gained significant popularity. In this context, chitin-based nanocomposites have shown great potential on account of their renewable, biocompatible, and eco-friendly traits, making them ideal candidate for the elimination of heavy metals. Chitin, owing to its built-in antibacterial properties, functional versatility and biodegradability, is utilized to fabricate composites and nanocomposites that effectively bind the metal ions and remove it from wastewater. The unique structure of chitin, with numerous functional groups, provides effective chelation sites that facilitate excellent binding of metal ions. This review highlights the extraction, properties and modification of chitin. Further it deals with the development of chitinbased composites as effective adsorbents in heavy metal ions eradication out of the contaminated water. 

References

[1] Plessis, A.du. Persistent degradation: Global water quality challenges and required actions. One Earth2022, 5, 129-131, https://doi.org/10.1016/j.oneear.2022.01.005

[2] Thakur, A.; Kumar, A.; Singh, A. Adsorptive removal of heavy metals, dyes, and pharmaceuticals: Carbon-based nanomaterials in focus. Carbon2024, 217, 118621, https://doi.org/10.1016/j.carbon.2023.118621

[3] Dagdag, O.; Quadri, T.W.; Haldhar, R.; Kim, S-C.; Daoudi, W.; Berdimurodov, E.; Akpan, E.D.; Ebenso, E.E. An Overview of Heavy Metal Pollution and Control. ACS Symp. Ser.2023, 1456, 3-24, https://doi.org/10.1021/bk-2023-1456.ch001

[4] Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon2020,6, e04691, https://doi.org/10.1016/j.heliyon.2020.e04691

[5] Shetty, S.S.; D, D.; S, H.; Sonkusare, S.; Naik, P.B.; Kumari, N.S.; Madhyastha, H. Environmental pollutants and their effects on human health. Heliyon2023, 9, e19496, https://doi.org/10.1016/j.heliyon.2023.e19496

[6] Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972, https://doi.org/10.3389/fphar.2021.643972

[7] Mitra, S.; Chakraborty, A.J,; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; Simal-Gandara, J. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci2022, 34, 101865, https://doi.org/10.1016/j.jksus.2022.101865

[8] Bhandari, H.; Garg, S.; Gaba, R. Advanced Nanocomposites for Removal of Heavy Metals from Wastewater. Macromol. Symp. 2021, 397, 2000337, https://doi.org/10.1002/masy.202000337

[9] https://cpcb.nic.in/who-guidelines-for-drinking-water-quality/

[10] Singh, N.B.; Susan, A.B.H. Polymer nanocomposites for water treatments. In Polymer-based Nanocomposites for Energy and Environmental Applications, Jawaid, M., Khan, M.S.,Woodhead Publishing Series in Composites Science and Engineering, 2018; pp. 569-595, https://doi.org/10.1016/B978-0-08-102262-7.00021-0

[11] Gahrouei, A.E.; Rezapour, A.; Pirooz, M.; Pourebrahimi, S. From classic to cutting-edge solutions: A comprehensive review of materials and methods for heavy metal removal from water environments. Desalin. Water Treat. 2024, 319, 100446, https://doi.org/10.1016/j.dwt.2024.100446

[12] Kato, S.; Kansha, Y. Comprehensive review of industrial wastewater treatment techniques. Environ Sci Pollut Res Int. 2024, 31, 51064–51097, https://doi.org/10.1007/s11356-024-34584-0

[13] Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water2021, 4, Article No. 36, https://doi.org/10.1038/s41545-021-00127-0

[14] Oyewo, O.A.; Muliwa, A.M.; Makgato, S.S.; Onwudiwe, D.C. Research progress on green adsorption process for water pollution control applications. Hybrid Adv.2025, 8, 100338, https://doi.org/10.1016/j.hybadv.2024.100338

[15] Badran, A.M.; Utra, U.; Yussof, N.S.; Bashir, M.J.K. Advancements in Adsorption Techniques for Sustainable Water Purification: A Focus on Lead Removal. Separations2023, 10, 565, https://doi.org/10.3390/separations10110565

[16] Hsu, C-Y.; Ajaj, Y.; Mahmoud, Z.H.; Ghadir, G.K.; Alani, Z.K.; Hussein, M.M.; Hussein, S.A.; Karim, M.M.; Al khalidi, A.; Abbas, J.K.; Kareem, A.H.; Kianfar, E. Adsorption of heavy metal ions use chitosan/graphene nanocomposites: A review study. Results Chem.2024,7, 101332, https://doi.org/10.1016/j.rechem.2024.101332

[17] Verma, M.; Lee, I.; Hong, Y.; Kumar, V.; Kim, H. Multifunctional β-Cyclodextrin-EDTA-Chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater. Environ. Pollut.2022, 292, 118447, https://doi.org/10.1016/j.envpol.2021.118447

[18] Hamed, O.; Lail, B.A.; Deghles, A.; Qasem, B.; Azzaoui, K.; Obied, A.A.; Algarra, M.; Jodeh, S. Synthesis of a cross-linked cellulose-based amine polymer and its application in wastewater purification. ESPR2019, 26, 28080–28091, https://doi.org/10.1007/s11356-019-06001-4

[19] Ge, Y.; Qin, L.; Li, Z. Lignin microspheres: An effective and recyclable natural polymer-based adsorbent for lead ion removal. Mater Des.2016, 95, 141-147, https://doi.org/10.1016/j.matdes.2016.01.102

[20] Mnasri-Ghnimi, S.; Frini-Srasra, N. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl. Clay Sci.2019, 179, 105151, https://doi.org/10.1016/j.clay.2019.105151

[21] Zhang, W.; Song, J.; He, Q.; Wang, H.; Lyu, W.; Feng, H.; Xiong, W.; Guo, W.; Wu, J.; Chen, L. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. J Hazard Mater.2020, 384, 121445, https://doi.org/10.1016/j.jhazmat.2019.121445

[22] Rameshthangam, P.; Solairaj, D.; Arunachalam, G.; Ramasamy, P. Chitin and Chitinases: Biomedical and Environmental Applications of Chitin and its Derivatives. JEN2018, 1, 20-43, https://doi.org/10.14302/issn.2690-4829.jen-18-2043

[23] Yadav, M.; Goswami, P.; Paritosh, K.; Kumar, M.; Pareek, N.; Vivekanand, V. Bioresour. Bioprocess.2019, 6, 8, https://doi.org/10.1186/s40643-019-0243-y

[24] Rostami, M.S.; Khodaei, M.M. Recent advances in chitosan-based nanocomposites for adsorption and removal of heavy metal ions. Int. J. Biol. Macromol., 2024, 270, 132386, https://doi.org/10.1016/j.ijbiomac.2024.132386

[25] Bastiaens, L.; Soetemans, L.; D'Hondt, E.; Elst, K. Sources of Chitin and Chitosan and their Isolation. In Chitin and Chitosan: Properties and Applications, van den Broek, L.A.M., Boeriu, C.G., Wiley Online Library, 2019, https://doi.org/10.1002/9781119450467.ch1

[26] Chakravarty, J.; Edwards, T.A. Innovation from waste with biomass-derived chitin and chitosan as green and sustainable polymer: A review. Energy Nexus 2022, 8, 100149, https://doi.org/10.1016/j.nexus.2022.100149

[27] Anastopoulos, I.; Bhatnagar, A.; Bikiaris, D.N.; Kyzas, G.Z. Chitin Adsorbents for Toxic Metals: A Review. Int. J. Mol. Sci. 2017, 18, 114, https://doi.org/10.3390/ijms18010114

[28] Atheena, P.V.; Basawa, R.; Raval, R. Advancing wastewater treatment: chitin and derivatives for PPCP contaminant mitigation. Polym. Bull. 2024, 81, 14307-14336, https://doi.org/10.1007/s00289-024-05429-0

[29] Sarode, S.; Upadhyay, P.; Khosa, M.A.; Mak, T.; Shakir, A.; Song, S.; Ullah, A. Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. Int. J. Biol. Macromol. 2019, 121, 1086-1100, https://doi.org/10.1016/j.ijbiomac.2018.10.089

[30] Akram, N.; Anjum, M.N.; Malik, F.Z.; Rehman, S.; Hafeez, I.; Murtaza, M.A.; Arshad, M.U. Chapter 16 - Bionanocomposites in food industry. In Bionanocomposites Green Synthesis and Applications Micro and Nano Technologies, Zia, K.M., Anjum, M.N., Jabeen, F., Ikram, S. Elsevier, 2020; pp. 421-456, https://doi.org/10.1016/C2017-0-04398-7

[31] Ursino, C.; Castro-Muñoz, R.; Drioli, E.; Gzara, L.; Albeirutty, M.H.; Figoli, F. Progress of Nanocomposite Membranes for Water Treatment. Membranes2018, 8, 18; https://doi.org/10.3390/membranes8020018

[32] Kamal, A.; Ashmawy, M.; S, S.; Algazzar, A.M.; Elsheikh, A.H. Fabrication techniques of polymeric nanocomposites: A comprehensive review. Proc. Inst. Mech. Eng. Pt C J Mechan. Eng. Sci. 2021, 236, https://doi.org/10.1177/09544062211055662

[33] Piekarska, K.; Sikora, M.; Owczarek, M.; Jóźwik-Pruska, J.; Wiśniewska-Wrona, M. Chitin and Chitosan as Polymers of the Future—Obtaining, Modification, Life Cycle Assessment and Main Directions of Application. Polym. 2023, 15, 793, https://doi.org/10.3390/polym15040793

[34] Barroso-Solares, S.; Lopez-Moya, F.; Fraile, T.; Prieto, Á.C.; Lopez-Llorca, L.; Pinto, J. Chitin and chitosan quantification in fungal cell wall via Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc.2025, 334, 125928. https://doi.org/10.1016/j.saa.2025.125928

[35] Bai, L.; Liu, L.; Esquivel, M.; Tardy, B.L.; Huan, S.; Niu, X.; Liu, S.; Yang, G.; Fan, Y.; Rojas, O.J. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem. Rev. 2022, 122, 11604–11674, https://doi.org/10.1021/acs.chemrev.2c00125

[36] Fernando, L.D.; Widanage, M.C.D.; Penfield, J.; Lipton, A.S.; Washton, N.; Latgé, J-P.; Wang, P.; Zhang, L.; Wang, T. Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis. Front Mol Biosci. 2021, 8, 727053, https://doi.org/10.3389/fmolb.2021.727053

[37] Lingait, D.; Rahagude, R.; Gaharwar, S.S.; Das, R.S.; Verma, M.G.; Srivastava, N.; Kumar, A.; Mandavgane, S. A review on versatile applications of biomaterial/polycationic chitosan: An insight into the structure-property relationship. Int. J Biol Macromol. 2024, 257, 128676, https://doi.org/10.1016/j.ijbiomac.2023.128676

[38] Bogdanova, O.I.; Polyakov, D.K.; Streltsov, D.R.; Bakirov, A.V.; Blackwell, J.; Chvalun, S.N. Structure of β-chitin from Berryteuthis magister and its transformation during whisker preparation and polymerization filling. Carbohydr. Polym.2016, 137, 678-684. https://doi.org/10.1016/j.carbpol.2015.11.027

[39] Střelcová, Z.; Kulhánek, P.; Friák, M.; Fabritius, H-O.; Petrov, M.; Neugebauer, J.; Koča, J. The structure and dynamics of chitin nanofibrils in an aqueous environment revealed by molecular dynamics simulations. RSC Adv.2016,6, 30710-30721, https://doi.org/10.1039/C6RA00107F

[40] Iber, B.T.; Kasan, N.A.; Torsabo, D.; Omuwa, J. A Review of Various Sources of Chitin and Chitosan in Nature. J. Renew. Mater.2021, 10, 42-49, https://doi.org/10.32604/jrm.2022.018142

[41] Tang, D.; Qian, J.; Wang, N.; Shu, J. Determining the degree of acetylation of chitin/chitosan using a SSNMR 13C method on the basis of cross polarization reciprocity relation. Carbohydr. Res. 2020, 498, 108168, https://doi.org/10.1016/j.carres.2020.108168

[42] Gatto, M.; Ochi, D.; Yoshida, C.M.P.; da Silva, C.F. Study of chitosan with different degrees of acetylation as cardboard paper coating. Carbohydr. Polym. 2019, 210, 56-63, https://doi.org/10.1016/j.carbpol.2019.01.053

[43] Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras, C.A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers (Basel). 2021,13, 3256, https://doi.org/10.3390/polym13193256

[44] Abidin, N.A.Z.; Kormin, F.; Abidin, N.A.Z.; Anuar, N.A.F.M.; Bakar, M.F.A. The Potential of Insects as Alternative Sources of Chitin: An Overview on the Chemical Method of Extraction from Various Sources. Int. J. Mol. Sci. 2020, 21, 4978, https://doi.org/10.3390/ijms21144978

[45] Joseph, S.M.; Krishnamoorthy, S.; Paranthaman, R.; Moses, J.A.; Anandharamakrishnan, C. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr. Polym. Tech. Appl. 2021, 2, 100036, https://doi.org/10.1016/j.carpta.2021.100036

[46] El Knidri, H.; Belaabed, R.; Addaou, A.; Laajeb, A.; Lahsini, A. Extraction, chemical modification and characterization of chitin and chitosan: A review. Int. J. Biol. Macromol. 2018, 120, 1181-1189, https://doi.org/10.1016/j.ijbiomac.2018.08.139

[47] Pakizeh, M.; Moradi, A.; Ghassemi, T. Chemical extraction and modification of chitin and chitosan from shrimp shells. Eur. Polym. J. 2021, 159, 110709, https://doi.org/10.1016/j.eurpolymj.2021.110709

[48] Kaczmarek, M.B.; Struszczyk-Swita, K.; Li, X.; Szczęsna-Antczak, M.; Daroch, M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front. Bioeng. Biotechnol. 2019, 7, Article 243, https://doi.org/10.3389/fbioe.2019.00243

[49] Hamdi, M.; Hammami, A.; Hajji, S.; Jridi, M.; Nasri, M.; Nasri, R. Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. Int J Biol Macromol. 2017, 101, 455-463, https://doi.org/10.1016/j.ijbiomac.2017.02.103

[50] Ablouh, El-H.; Jalal, R.; Rhazi, M.; Taourirte, M. Surface modification of α-chitin using an acidic treatment followed by ultrasonication: Measurements of their sorption properties. Int. J. Biol. Macromol. 2020, 151, 492-498, https://doi.org/10.1016/j.ijbiomac.2020.02.204

[51] Balitaan, J.N.I.; Yeh, J-M.; Santiago, K.S. Marine waste to a functional biomaterial: Green facile synthesis of modified-β-chitin from Uroteuthis duvauceli pens (gladius). Int. J. Biol. Macromol. 2020, 154, 1565-1575, https://doi.org/10.1016/j.ijbiomac.2019.11.041

[52] Leng, F.; Chen, F.; Jiang, X. Modified porous carboxymethyl chitin microspheres by an organic solvent-free process for rapid hemostasis. Carbohydr. Polym. 2021, 270, 118348, https://doi.org/10.1016/j.carbpol.2021.118348

[53] Tan, L.; Zhou, X.; Wu, K.; Yang, D.; Jiao, Y.; Zhou, C. Tannic acid/CaII anchored on the surface of chitin nanofiber sponge by layer-by-layer deposition: Integrating effective antibacterial and hemostatic performance. Int. J. Biol. Macromol. 2020, 159, 304-315, https://doi.org/10.1016/j.ijbiomac.2020.05.098

[54] Zhang, L.; Luo, H.; Liu, P.; Fang, W.; Geng, J. A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr(VI) in aqueous solutions. Int. J. Biol. Macromol. 2016, 87, 586–596. http://dx.doi.org/10.1016/j.ijbiomac.2016.03.027

[55] Yan, E.; Cao, M.; Ren, X.; Jiang, J.; An, Q.; Zhang, Z.; Gao, J.; Yang, X.; Zhang, D. Synthesis of Fe3O4 nanoparticles functionalized polyvinyl alcohol/chitosan magnetic composite hydrogel as an efficient adsorbent for chromium (VI) removal. J. Phys. Chem. Solids.2018, 121, 102-109, https://doi.org/10.1016/j.jpcs.2018.05.028

[56] Vakilia, M.; Mojirib, A.; Kindaichib, T.; Cagnettac, G.; Yuana, J.; Wanga, B.; Giwa, A.S. Cross-linked chitosan/zeolite as a fixed-bed column for organic micropollutants removal from aqueous solution, optimization with RSM and artificial neural network. JEM2019, 250, 109434, https://doi.org/10.1016/j.jenvman.2019.109434

[57] Wu, D.; Hu, L.; Wang, Y.; Wei, Q.; Yan, L.; Yan, T.; Li, Y.; Du, B. EDTA modified β-cyclodextrin/chitosan for rapid removal of Pb(II) and acid red from aqueous solution. J. Colloid Interface Sci. 2018, 523, 56-64, https://doi.org/10.1016/j.jcis.2018.03.080

[58] Bhatt, P.; Joshi, S.; Bayram, G.M.U.; Khati, P.; Simsek, H. Developments and application of chitosan-based adsorbents for wastewater treatments. Environ. Res.2023, 226, 115530, https://doi.org/10.1016/j.envres.2023.115530

[59] Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr Polym.2020, 251, 116986, https://doi.org/10.1016/j.carbpol.2020.116986

[60] Zhong,T.; Wolcott, M.P.; Liu, H.; Wang, J. Acidic Ethanol/Water Casting Approach to Improve Chitin Nanofibril Dispersion and Properties of Propionylated Chitin Biocomposites. ACS Sustain. Chem. Eng. 2021, 9, 3289−3299, https://doi.org/10.1021/acssuschemeng.0c08990

[61] Shankara, S.; Reddya, J.P.; Rhima, J-W.; Kimb, H-Y. Preparation, characterization, and antimicrobial activity of chitin nano brils reinforced carrageenan nanocomposite films. Carbohydr Polym. 2015, 117, 468–475, https://doi.org/10.1016/j.carbpol.2014.10.010

[62] Dobrovolskaya, I. P.; Yudin, V.E.; Popryadukhin, P.V.; Ivan’kova, E.M.; Shabunin, A.S.; Kasatkin, I.A.; Morgantie, P. Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers. Carbohydr Polym. 2018,194, 260–266, https://doi.org/10.1016/j.carbpol.2018.03.074

[63] Teimouri, A.; Azadi, M. -Chitin/gelatin/nanohydroxyapatite composite scaffold prepared through freeze-drying method for tissue engineering applications. Polym Bull. 2016, 73, 3513-3529, https://doi.org/10.1007/s00289-016-1691-6

[64] Rubentheren, V.; Ward, T.A.; Chee, C.Y.; Tang, C.K.; Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym. 2015,115, 379-387, https://doi.org/10.1016/j.carbpol.2014.09.007

[65] Duan, Y.; Freyburger, A.; Kunz, W.; Zollfrank, C. Cellulose and chitin composite materials from an ionic liquid and a green co-solvent. Carbohydr Polym. 2018, 192, 159–165. https://doi.org/10.1016/j.carbpol.2018.03.045

[66] Bogdanova, O.I.; Polyakov, D.K.; Streltsov, D.R.; Kulebyakina, A.I.; Orekhov, A.S.; Vasiliev, A.L.; Chvalun, S.N. Fabrication and mechanical properties of composite based on β-chitin and polyacrylic acid. Carbohydr Polym. 2017, 157, 1496-1502, https://doi.org/10.1016/j.carbpol.2016.11.032

[67] Solairaj, D.; Rameshthangam, P. Silver nanoparticle embedded α-chitin nanocomposite for enhanced antimicrobial and mosquito larvicidal activity. J. Environ. Polym. Degrad. 2016, 25, 1-18, https://doi.org/10.1007/s10924-016-0822-3

[68] Oun, A.A.; Rhim, J-W. Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydr Polym.2017, 169, 467–479. https://doi.org/10.1016/j.carbpol.2017.04.042

[69] Wang, Y.; Pei, Y.; Xiong, W.; Liu, T.; Li, J.; Liu, S.; Li, B. New photocatalyst based on graphene oxide/chitin for degradation of dyes under sunlight. Int. J. Biol. Macromol. 2015, 81, 477–482, http://dx.doi.org/10.1016/j.ijbiomac.2015.08.037

[70] Sahraee, S.; Milani, J.M.; Ghanbarzadeh, B.; Hamishehkar, H. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int. J. Biol. Macromol. 2017, 97, 373–381, https://doi.org/10.1016/j.ijbiomac.2016.12.066

[71] Aouadi, A.; Saoud, D.H.; Laouini, S.E.; Rebiai, A.; Achouri, A.; Mohammed, H.A.; Bouafa, A.; Abdullah, J.A.A.; Alharthi, F. Synergistic chitin zinc nanocomposites from shrimp shell waste: characterization, antioxidant, and antibacterial properties. Biomass Convers. Biorefin. 2023, 15, 545-561, https://doi.org/10.1007/s13399-023-05237-y

[72] Heiba, H.F.; Taha, A.A.; Mostafa, A.R.; Mohamed, L.A.; Fahmy, M.A. Preparation and characterization of novel mesoporous chitin blended MoO3-montmorillonite nanocomposite for Cu(II) and Pb (II) immobilization. Int. J. Biol. Macromol. 2020, 152, 554–566, https://doi.org/10.1016/j.ijbiomac.2020.02.254

[73] Cheikh, F.B.; Mabrouk, A.B.; Magnin, A.; Lancelon-Pin, C.; Putaux, J-L.; Bouf, S. Honeycomb Organization of Chitin Nanocrystals (ChNCs) in Nanocomposite Films of UV-Cured Waterborne Acrylated Epoxidized Soybean Oil Emulsified with ChNCs. Biomacromolecules 2021, 22, 3780–3790, https://doi.org/10.1021/acs.biomac.1c00612

[74] Maalihan, R.D.; Chen, Q.; Tamura, H.; Sta. Agueda, J.R.H.; Pajarito, B.B.; Caldona, E.B.; Advincula, R.C. Mechanically and thermally enhanced 3D-printed photocurable polymer nanocomposites containing functionalized chitin nanowhiskers by stereolithography. ACS Appl. Polym. Mater. 2022, 4, 2513–2526, https://doi.org/10.1021/acsapm.1c01816

[75] Tanpichai, S.; Thongdonson, K.; Boonmahitthisud, A. Enhancement of the mechanical properties and water barrier properties of thermoplastic starch nanocomposite films by chitin nanofibers: Biodegradable coating for extending banana shelf life. J Mater Res Technol. 2023, 26, 5617-5625, https://doi.org/10.1016/j.jmrt.2023.08.244

[76] Kumar, P.; Goud, E.L.; Devi, P.; Dey, S.R.; Dwivedi, P. Heavy metals: transport in plants and their physiological and toxicological effects. In Plant Metal and Metalloid Transporters, Kumar, K.; Srivastava, S., Springer, 2022; pp 23-54, https://doi.org/10.1007/978-981-19-6103-8_2

[77] Raychaudhuri, S.S.; Pramanick, P.; Talukder, P.; Basak, A. Polyamines, metallothioneins, and phytochelatins—Natural defense of plants to mitigate heavy metals. In Studies in Natural Products Chemistry, Rahman, Atta-ur., Elsevier, 2021; pp 227-261, https://doi.org/10.1016/B978-0-12-819487-4.00006-9

[78] Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact. 2022,367, 110173, https://doi.org/10.1016/j.cbi.2022.110173

[79] Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; Senatov, F.; Koppala, S.; Swamiappan, S. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094, https://doi.org/10.1016/j.hazadv.2022.100094

[80] Akhtar, N.; Ishak, M.I.S.; Bhawani, S.A.; Umar, K. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water, 2021, 13, 2660, https://doi.org/10.3390/w13192660

[81] Campillo-Cora, C.; Rodríguez-Seijo, A.; Pérez-Rodríguez, P.; Fernández-Calviño, D.; Santás-Miguel, V. Effect of heavy metal pollution on soil microorganisms: Influence of soil physicochemical properties. A systematic review. Eur. J. Soil Biol.2025, 124, 103706.

https://doi.org/10.1016/j.ejsobi.2024.103706

[82] Haidar, Z.; Fatema, K.; Shoily, S.S.; Sajib, A.A. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep. 2023,10, 554–570, https://doi.org/10.1016/j.toxrep.2023.04.010

[83] Nikić, J.; Watson, M.; Tubić, A.; Šolić, M.; Agbaba, J. Recent trends in the application of magnetic nanocomposites for heavy metals removal from water: A review. Sep. Sci. Technol. 2024, 59, 293-331, https://doi.org/10.1080/01496395.2024.2315626

[84] Salam, M.A.; Obaid, A.Y.; El-Shishtawy, R.M.; Hussein, M.A. Preparation of novel magnetic chemically modified chitin nanocomposites and their application for environmental remediation of cadmium ions in model and real water samples. J. Phys. Chem. Solids. 2021, 148,109748, https://doi.org/10.1016/j.jpcs.2020.109748

[85] Rajak, J.K.; Khandelwal, N.; Behera, M.P.; Tiwari, E.; Singh, N.; Ganie, Z.A.; Darbha, G.K.; Monikh, F.A.; Schäfer, T. Removal of chromate ions from leachate-contaminated groundwater samples of Khan Chandpur, India, using chitin modified iron-enriched hydroxyapatite nanocomposite. ESPR 2021, 28, 41760-41771, https://doi.org/10.1007/s11356-021-13549-7

[86] Salam, M.A. Preparation and characterization of chitin/magnetite/multiwalled carbon nanotubes magnetic nanocomposite for toxic hexavalent chromium removal from solution. J. Mol. Liq.2017, 233, 197-202, https://doi.org/10.1016/j.molliq.2017.03.023

[87] Gomaa, E.Z. Iron Nanoparticles α-Chitin Nanocomposite for Enhanced Antimicrobial, Dyes Degradation and Heavy Metals Removal Activities. J Polym. Environ. 2018, 26, 3638–3654, https://doi.org/10.1007/s10924-018-1247-y

[88] Nguyen, K.D.; Trang, T.T.C.; Kobayashi, T. Chitin-halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions. J. Appl. Polym. Sci.2018, https://doi.org/10.1002/APP.47207

[89] Heiba, H.F.; Taha, A.A.; Mostafa, A.R.; Mohamed, L.A.; Fahmy, M.A. Preparation and characterization of novel mesoporous chitin blended MoO3-montmorillonite nanocomposite for Cu(II) and Pb (II) immobilization. Int. J Biol. Macromol. 2020, 152, 554–566,

https://doi.org/10.1016/j.ijbiomac.2020.02.254

[90] Li, X.; Xu, L.; Gao, J.; Yan, M.; Bi, H.; Wang, Q. Surface modification of chitin nanofibers with dopamine as efficient nanosorbents for enhanced removal of dye pollution and metal ions. Int. J Biol. Macromol. 2023, 253, 127113, https://doi.org/10.1016/j.ijbiomac.2023.127113

[91] Horst, M.F.; Alvarez, M.; Lassalle, V.L. Removal of heavy metals from wastewater using magnetic nanocomposites: Analysis of the experimental conditions. Sep. Sci. Technol. 2016, 51, 550-563, https://doi.org/10.1080/01496395.2015.1086801

[92] Singh, S.; Arputharaj, E.; Dahms, H-U.; Patel, A.K.; Huang, Y-L. Chitosan-based nanocomposites for removal of Cr(VI) and synthetic food colorants from wastewater. Bioresour. Technol.2022,351, 127018, https://doi.org/10.1016/j.biortech.2022.127018

[93] Thakur, M.; Rajput, J.K.; Kumar, R. Study of morphological aspects in the efficient adsorptive removal of heavy metal ions using graphene oxide-chitosan based magnetic nanocomposite (0.4Fe0x:6x@GCS). J. Hazard. Mater. 2023, 11, 100362, https://doi.org/10.1016/j.hazadv.2023.100362

[94] Peralta, M.E.; Nisticò, R.N.; Franzoso, F.; Magnacca, G.; Fernandez, L.; Parolo, M.E.; León, E.G.; Carlos, L. Highly efficient removal of heavy metals from waters by magnetic chitosan-based composite. Adsorption 2019, 25, 1337-1347, https://doi.org/10.1007/s10450-019-00096-4

[95] Shahzad, A.; Miran, W.; Rasool, K.; Nawaz, M.; Jang, J.; Lim, S-R.; Lee, D.S. Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites, RSC Adv.2017, 7, 9764-9771, https://doi.org/10.1039/C6RA28406J

[96] Anush, S.M.; Chandan, H.R.; Gayathri, B.H.; Asma, Manju, N.; Vishalakshi, B.; Kalluraya, B. Graphene oxide functionalized chitosan-magnetite nanocomposite for removal of Cu(II) and Cr(VI) from waste water. Int. J. Biol. Macromol. 2020, 164, 4391-4402, https://doi.org/10.1016/j.ijbiomac.2020.09.059

[97] Arabyarmohammadi, H.; Darban, A.K.; Abdollahy, M.; Yong, R.; Ayati, B.; Zirakjou, A.; van der Zee, S.E.A.T.M. Utilization of a Novel Chitosan/Clay/Biochar Nanobiocomposite for Immobilization of Heavy Metals in Acid Soil Environment. J Polym Environ. 2018, 26, 2107-2119, https://doi.org/10.1007/s10924-017-1102-6

[98] Maity, J.; Ray, S.K. Chitosan based nano composite adsorbent—Synthesis, characterization and application for adsorption of binary mixtures of Pb(II) and Cd(II) from water. Carbohydr Polym. 2018, 182, 159-171, https://doi.org/10.1016/j.carbpol.2017.10.086

[99] Gokila, S.; Gomathi, T.; Sudha, P.N.; Anil, S. Removal of the heavy metal ion chromiuim(VI) using Chitosan and Alginate nanocomposites. Int. J. Biol. Macromol. 2017,104, 1459-1468, https://doi.org/10.1016/j.ijbiomac.2017.05.117

[100] Bartczak, P.; Klapiszewski, L.; Wysokowski, M.; Majchrzak, I.; Czernicka, W.; Piasecki, A.; Ehrlich, H.; Jesionowski, T. Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent. J. Environ. Manag. 2017, 204, 300e310. https://doi.org/10.1016/j.jenvman.2017.08.059

[101] Peralta, M.E.; Nisticò, R.; Franzoso, F.; Magnacca, G.; Fernandez, L.; Parolo, M.E.; León, E.G.; Carlos, L. Highly efficient removal of heavy metals from waters by magnetic chitosan‑based composite. Adsorption2019, 25, 1337-1347, https://doi.org/10.1007/s10450-019-00096-4

[102] Chen, H.; Meng, Y.; Jia, S.; Hua, W.; Cheng, Y.; Lu, J.; Wang, H. Graphene oxide modified waste newspaper for removal of heavy metal ions and its application in industrial wastewater. Mater. Chem. Phys.2020, 244, 122692, https://doi.org/10.1016/j.matchemphys.2020.122692

[103] Xing, P.; Wang, C.; Ma, B.; Chen, Y. Removal of Pb(II) from aqueous solution using a new zeolite-type absorbent: Potassium ore leaching residue. J. Environ. Chem. Eng. 2018, 6, 7138-7143, https://doi.org/10.1016/j.jece.2018.11.003

[104] Lu, J.; Jin, R-N.; Liu, C.; Wang, Y-F.; Ouyang, X-k. Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution. Int. J. Biol. Macromol.2016, 93, 547-556, https://doi.org/10.1016/j.ijbiomac.2016.09.004

[105] Irawana, C.; Nataa, I.F.; Leeb, C-K. Removal of Pb(II) and As(V) using magnetic nanoparticles coated montmorillonite via one-pot solvothermal reaction as adsorbent. J. Environ. Chem. Eng.2019, 7, 103000, https://doi.org/10.1016/j.jece.2019.103000

[106] Guo, T.; Bulin, C. Construction of chitosan based magnetic bio adsorbent for efficient recovery of Ni(II). Int. J. Biol. Macromol., 2025, 307, 141864, https://doi.org/10.1016/j.ijbiomac.2025.141864

[107] Tran, L.T.; Tran, H.V.; Le, T.D.; Bach, G.L.; Tran, L.D. Studying Ni(II) Adsorption of Magnetite/Graphene Oxide/Chitosan Nanocomposite. Adv. Polym. Tech. 2019, https://doi.org/10.1155/2019/8124351

[108] He, X.; Yao, B.; Xia, Y.; Huang, H.; Gan, Y.; Zhang, W. Coal fly ash derived zeolite for highly efficient removal of Ni2+ in waste water. Powder Technol. 2020, 367, 40-46, https://doi.org/10.1016/j.powtec.2019.11.037

[109] Huang, M; Yan, W; Zhang, L; He, Z; Ma, J; Ding, Y; Ou, J; Chen, S; Jiang, W; Dai, X; Li, Z; Wei, G. A Noval Cation–Anion Absorbent of Tannin-Dialdehyde Carboxymethyl Cellulose for Removal of Cr(VI) and Ni(II) from Aqueous Solutions with High Adsorption Capacity. J Polym Environ. 2022, 30, 3495, https://doi.org/10.1007/s10924-022-02451-z

[110] Mu'azu, N.D.; Bukhari, A.; Munef, K. Effect of montmorillonite content in natural Saudi Arabian clay on its adsorptive performance for single aqueous uptake of Cu(II) and Ni(II). J. King Saud Univ. Sci. 2020, 32, 412-422, https://doi.org/10.1016/j.jksus.2018.06.003

[111] Labidi, A.; Salaberria, A.M.; Fernandes, S.C.M.; Labidi, J.; Abderrabba, M. Adsorption of copper on chitin-based materials: Kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng.2016, 65, 140-148, https://doi.org/10.1016/j.jtice.2016.04.030

[112] Ma, Y-Ma.; Shao, W-J.; Sun, W.; Kou, Y-L.; Li, X.; Yang, H-P. One-step fabrication of β-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb(II), Cu(II) and methylene blue in aqueous solutions. Appl. Surf. Sci. 2018, 459, 544-553, https://doi.org/10.1016/j.apsusc.2018.08.025

[113] Aghazadeha, S.; Safarzadehb, E.; Gharabaghia, M.; Irannajadb, M. Modification of natural zeolite for Cu removal from waste waters. Desalin Water Treat. 2016,57, 27843–27850, https://doi.org/10.1080/19443994.2016.1183230

[114] Gad, Y.H; Ali, H.E; Hegazy, ES.A. Radiation Induced Improving mechanical and Thermal Properties of Carboxymethyl Cellulose/ Clay Composite for Application in Removal of Copper (II) Ions from Wastewater. J Inorg Organomet Polym, 2021, 31, 2083-2094, https://doi.org/10.1007/s10904-020-01850-w

[115] Alandis, N.M.; Mekhamer, W.; Aldayel, O.; Hefne, J.A.A.; Alam, M. Adsorptive Applications of Montmorillonite Clay for the Removal of Ag(I) and Cu(II) from Aqueous Medium. J. Chem. 2019, https://doi.org/10.1155/2019/7129014.

Downloads

Dimension Citations

Published

2025-04-28

Issue

Section

Review Articles

How to Cite

Mandal, M., Deka, A., & Saikia, V. (2025). Nano-composites based on Chitin for the Removal of Heavy Metals from Wastewater: A Mini Review. Multidisciplinary Research Journal, 1(2), 87-111. https://doi.org/10.63635/mrj.v1i2.28