Technique of Synthesis of Anisotropic Shaped Plasmonic Nanoparticles
DOI:
https://doi.org/10.63635/mrj.v1i2.29Keywords:
Anisotropic nanoparticles, Plasmonic nanoparticles, Synthesis Techniques, SurfactantsAbstract
Anisotropic nanoparticles have attracted considerable attention for their distinctive shape-dependent optical, electronic, and catalytic properties, making them valuable across diverse applications, including medicine and nanotechnology. This abstract presents an overview of synthesis techniques used to produce anisotropic nanoparticles with controlled shapes, sizes, and compositions. Various methods, including chemical reduction, seed-mediated growth, and template-assisted approaches, are discussed in terms of their efficiency, reproducibility, and scalability. Emphasis is placed on understanding the role of surfactants, reducing agents, and reaction conditions in driving anisotropic growth. Additionally, recent advancements in green synthesis methods highlight the shift towards environmentally friendly procedures. The review provides insights into how precise control over nanoparticle anisotropy enhances their functional properties and enables their targeted applications in photonics, biomedicine, and catalysis. The findings underscore the potential of these techniques to advance the design and fabrication of next-generation anisotropic nanomaterials.
Downloads
References
[1] Xia, Y.; Chen, Q.; Banin, U. Introduction: Anisotropic Nanomaterials, ACS Publication: Chem. Rev., USA, 2023, pp. 3325–3328, https://doi.org/10.1021/acs.chemrev.3c00092
[2] Burrows, N. D. et al. Anisotropic Nanoparticles and Anisotropic Surface Chemistry. J. Phys. Chem. Lett.2016, 7, 4, 632–641, https://doi.org/10.1021/acs.jpclett.5b02205
[3] Wei, M.; Deng, T.; Zhang, Q.; Cheng, Z.; Li, S. Seed-Mediated Synthesis of Gold Nanorods at Low Concentrations of CTAB, ACS Omega2021, 6, 13, 9188–9195, https://doi.org/10.1021/acsomega.1c00510
[4] Scarabelli, L.; Liz-Marzán, L. M. An Extended Protocol for the Synthesis of Monodisperse Gold Nanotriangles, ACS Nano2021, 15, 12, 18600–18607, https://doi.org/10.1021/acsnano.1c10538
[5] Liebig, F. et al. A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions, RSC Adv. 2019, 9, 23633-23641,https://doi.org/10.1039/C9RA02384D
[6] Das, A. K.; Kalita, J. J.; Borah, M. et al. Papaya latex mediated synthesis of prism shaped proteolytic gold nanozymes. Sci Rep, 2023,13, 5965-5978. https://doi.org/10.1038/s41598-023-32409-7
[7] Singh, K. Rb,; Natarajan, A.; Pandey, S. S.; Bioinspired Multifunctional Silver Nanoparticles for Optical Sensing Applications: A Sustainable Approach, ACS Appl. Bio Mater. 2023, 6, 11, 4549–4571, https:// DOI: 10.1021/acsabm.3c00669
[8] Hartland, G. V.; Besteiro, L. V.; Johns, P.; Govorov, A. O. What’s so Hot about Electrons in Metal Nanoparticles? ACS Energy Lett.2017, 2, 7, 1641–1653, https://doi.org/10.1021/acsenergylett.7b00333
[9] Zhou, Y.; Jin, C.; Li, Y.; Shen, W. Dynamic behavior of metal nanoparticles for catalysis, Nanotoday, 2018, 20, 101-120, https://doi.org/10.1016/j.nantod.2018.04.005
[10] Klębowski, B.; Depciuch, J.; Parlińska-Wojtan, M.; Baran, J. Applications of Noble Metal-Based Nanoparticles in Medicine, Int. J. Mol. Sci. 2018,19, 4031, http://doi: 10.3390/ijms19124031
[11] Si, P. et al., Gold nanomaterials for optical biosensing and bioimaging, Nanoscale Adv., 2021, 3, 2679–2698. https://doi.org/10.1039/D0NA00961J
[12] Biswas, S.; Chakraborty, J.; Agarwal, A,; Kumbhakar, P. Gold nanostructures for the sensing of pH using a smartphone, RSC Adv. 2019, 9, 34144-34151, https://doi.org/10.1039/C9RA07101F
[13] Krishna, P. G. et al., Photocatalytic Activity Induced by Metal Nanoparticles Synthesized by Sustainable Approaches: A Comprehensive Review, Front. Chem. 2022, 10, 917831, https://doi.org/10.3389/fchem.2022.917831
[14] Jana, J.; Ganguly, M,; Pal, T, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application, RSC Adv., 2016, 6, 86174-86211,https://doi.org/10.1039/C6RA14173K
[15] Semchuk, O. Yu.; Biliuk, A. A.; Havryliuk, O. O.; Biliuk, A. I. Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance, Appl. Surf. Sci. Adv., 2021,3, 100057, https://doi.org/10.1016/j.apsadv.2021.100057
[16] Biswas, S.; Kole, A. K.; Sarkar, R.; Kumbhakar, P. Synthesis of anisotropic nanostructures of silver for its possible applications in glucose and temperature sensing, Mater. Res., 2014, 1, 045043, https://DOI 10.1088/2053-1591/1/4/045043
[17] López-Lozano, X.; Barron, H.; Mottet, C.; Weissker, H. Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods – an ab initio TDDFT study, Phys. Chem. Chem. Phys. 2014,16, 1820-1823,https://doi.org/10.1039/C3CP53702A
[18] Chapagain, P. et al., Tuning the Surface Plasmon Resonance of Gold Dumbbell Nanorods, ACS Omega, 2021, 6, 10, 6871–6880, https://doi.org/10.1021/acsomega.0c06062
[19] Yu, S. et al., Noble Metal Nanoparticle-Based Photothermal Therapy: Development and Application in Effective Cancer Therapy, Int. J. Mol. Sci., 2024, 25, 5632, https://doi.org/10.3390/ijms25115632
[20] Kenmotsu, S. et al., Surface-Enhanced Raman Scattering on Size-Classified Silver Nanoparticles Generated by Laser Ablation, ACS Omega, 2024, 9, 36, 37716–37723, https://doi.org/10.1021/acsomega.4c03046
[21] Estrada-Mendoza, T. A., Willett, D, Chumanov, G. Light Absorption and Scattering by Silver/Silver Sulfide Hybrid Nanoparticles, J. Phys. Chem. C2020, 124, 49, 27024–27031,https:// DOI:10.1021/acs.jpcc.0c08247
[22] Burrows, N. D. et al., Anisotropic Nanoparticles and Anisotropic Surface Chemistry, J. Phys. Chem. Lett., 2016, 7, 4, 632–641, https://DOI: 10.1021/acs.jpclett.5b02205
[23] Pozzi, M. et al., Visualization of the High Surface-to-Volume Ratio of Nanomaterials and Its Consequences, J. Chem. Educ. 2024, 101, 8, 3146–3155, https://doi.org/10.1021/acs.jchemed.4c00089
[24] van Etten, M. P. C., Zijlstra, B., Hensen, E. J. M., Filot, I. A. W., Enumerating Active Sites on Metal Nanoparticles: Understanding the Size Dependence of Cobalt Particles for CO Dissociation, ACS Catal., 2021, 11, 14, 8484–8492, https://doi.org/10.1021/acscatal.1c00651
[25] Xu, J.; Zhang, W.; Guo, Y.; Chen, X.; Zhang, Y. Metal nanoparticles as a promising technology in targeted cancer treatment, Drug Deliv., 2022, 29, 664–678, https:// doi: 10.1080/10717544.2022.2039804
[26] Maturi, M. et al., Surface-Stabilization of Ultrathin Gold Nanowires for Capacitive Sensors in Flexible Electronics, ACS Appl. Nano Mater., 2021, 4, 9, 8668–8673, https://doi.org/10.1021/acsanm.1c01849
[27] Vargas, J. A. et al., Ultrathin Gold Nanowires with the Polytetrahedral Structure of Bulk Manganese, ACS Nano2018, 12, 9, 9521–9531, https:// DOI: 10.1021/acsnano.8b05036
[28] Das, R. et al., Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia, J. Phys. Chem. C, 2016, 120, 18, 10086–10093, https://doi.org/10.1021/acs.jpcc.6b02006
[29] Bushra, R. et al., Recent advances in magnetic nanoparticles: Key applications, environmental insights, and future strategies, SM&T, 2024, 40, 00985, https: DOI:10.1016/j.susmat.2024.e00985
[30] Chang, D. et al., Biologically Targeted Magnetic Hyperthermia: Potential and Limitations, Front Pharmacol., 2018, 9, 831, https://doi.org/10.3389/fphar.2018.00831
[31] Nair, A. S.; Peining, Z.; Babu, V. J.; Shengyuan, Y.; Ramakrishn, S. Anisotropic TiO2 nanomaterials in dye-sensitized solar cells, Phys. Chem. Chem. Phys., 2011,13, 21248-21261,https://doi.org/10.1039/C1CP23085A
[32] Kwon, H.; Yang, Y.; Kim, G.; Gima, D.; Ha, M. Anisotropy in magnetic materials for sensors and actuators in soft robotic systems, Nanoscale, 2024,16, 6778-6819, https://doi.org/10.1039/D3NR05737B
[33] Hu, J,; Brackemyer, C. A.; Byun, H.; Kim, J. Enhanced Stability of Anisotropic Gold Nanoparticles by Poly(N-isopropylacrylamide), J. Mater. Sci. Technol., 2014, 30, 5, 441-448, https://doi.org/10.1016/j.jmst.2014.03.012
[34] Biswas, S., Kole, A. K., Tiwary, C. S., Kumbhakar, P., Observation of Size-Dependent Electron–Phonon Scattering and Temperature-Dependent Photoluminescence Quenching in Triangular-Shaped Silver Nanoparticles, Plasmonics, 2016, 11, 593–600, https: DOI:10.1007/s11468-015-0072-6
[35] Mao, Qi. et al., A novel passive detection method for glucose sensing based on enzyme-catalyzed reaction regulating magnetic anisotropy, Chem. Eng. J., 2022, 446, 136844, https://doi.org/10.1016/j.cej.2022.136844
[36] Kohout, C.; Santi, C.; Polito, L., Anisotropic Gold Nanoparticles in Biomedical Applications, Int. J. Mol. Sci., 2018, 19, 3385, https:// DOI: 10.3390/ijms19113385
[37] Gayathri, R. et al., Plasmonic random laser enabled artefact-free wide-field fluorescence bioimaging: uncovering finer cellular features, Nanoscale Adv., 2022,4, 2278-2287, https://doi.org/10.1039/D1NA00866H
[38] Kavalaraki, A., Spyratou, E., Kouri, M. A.; Efstathopoulos, E. P., Gold Nanoparticles as Contrast Agents in Ophthalmic Imaging, Optics, 2023, 4, 74-99, https://doi.org/10.3390/opt4010007
[39] Yingxin, W.; Qianqian, Z. Preparation of novel anisotropic gold nanoplatform as NIR absorbing agents for photothermal therapy of liver cancer and enhanced ultrasound contrast imaging, Mater. Res. Express, 2020, 7, 125006, https:// DOI 10.1088/2053-1591/abd0a7
[40] Chang, F.; Davies, G. From 0D to 2D: Synthesis and bio-application of anisotropic magnetic iron oxide nanomaterials, Progress in Materials Science, 2024, 144, 101267, https://doi.org/10.1016/j.pmatsci.2024.101267
[41] Das, A.; Yadav, N.; Manchala, S.; Bungla, M.; Ganguli, A. K. Mechanistic Investigations of Growth of Anisotropic Nanostructures in Reverse Micelles, ACS Omega2021, 6, 2, 1007–1029, https://doi.org/10.1021/acsomega.0c04033
[42] Kiani, F.; Tagliabue, G. High Aspect Ratio Au Microflakes via Gap-Assisted Synthesis, Chem. Mater. 2022, 34, 3, 1278–1288, https://doi.org/10.1021/acs.chemmater.1c03908
[43] Sajanlal, P. R.; Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Anisotropic nanomaterials: structure, growth, assembly, and functions, Nano Rev., 2011, 2, 5883, https:// doi: 10.3402/nano.v2i0.5883
[44] Xia, Y.; Gilroy, K. D.; Peng, H.; Xia, X. Seed-Mediated Growth of Colloidal Metal Nanocrystals, Angew. Chem., 2017, 56, 60-95, https://doi.org/10.1002/anie.201604731
[45] Yamamoto, E.; Kurimoto, D.; Ito, K.; Hayashi, K.; Kobayashi, M.; Osada, M. Solid-state surfactant templating for controlled synthesis of amorphous 2D oxide/oxyhydroxide nanosheets, Nat. Commun., 2024, 15, 6612, https://doi.org/10.1038/s41467-024-51040-2
[46] Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution, Chem. Rev., 2014, 114, 15, 7610–7630, https://doi.org/10.1021/cr400544s
[47] Papanikolaou, G.; Centi, G.; Perathoner, S.; Lanzafame, P. Green synthesis and sustainable processing routes, Curr. Opin. Green Sustain. Chem., 2024, 47, 100918, https://doi.org/10.1016/j.cogsc.2024.100918
[48] Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Mater. Adv., 2021, 2, 1821-1871, https://doi.org/10.1039/D0MA00807A
[49] Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles, Green Chemistry Letters and Reviews, 2020, 13(3), 223–245, https://doi.org/10.1080/17518253.2020.1802517
[50] El-Eskandarany, M. S.; Al-Hazza, A.; Al-Hajji, L. A.; Ali, N.; Al-Duweesh, A. A.; Banyan, M.; Al-Ajmi, F. Mechanical Milling: A Superior Nanotechnological Tool for Fabrication of Nanocrystalline and Nanocomposite Materials, Nanomaterials (Basel), 2021, 11, 2484, https://doi.org/10.3390/nano11102484
[51] Ali, M.; Abdala, A. Large scale synthesis of hexagonal boron nitride nanosheets and their use in thermally conductive polyethylene nanocomposites, International Journal of Energy Research, Int J Energy Res., 2021, 1–14, https://doi.org/10.1002/er.7149
[52] Pramanik, A. et al., Synthesis of bilayer graphene nanosheets by pulsed laser ablation in liquid and observation of its tunable nonlinearity, Appl. Surf. Sci., 2020, 499, 143902, https://DOI:10.1016/j.apsusc.2019.143902
[53] Tseng, A. A.; Chen, K.; Chen, C. D.; Ma, K. J. Electron beam lithography in nanoscale fabrication: recent development, IEEE. T. COMP. PACK. MAN., 2003, 26, 141-149, https:// DOI:10.1109/TEPM.2003.817714
[54] Barad, H.; Kwon, H.; Alarcón-Correa, M.; Fischer, P. Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects, ACS Nano2021, 15, 4, 5861–5875, https://doi.org/10.1021/acsnano.0c09999
[55] Han, H.; Huang, Z; Lee, W. Metal-assisted chemical etching of silicon and nanotechnology applications, Nanotoday, 2014, 9, 271-304, https://doi.org/10.1016/j.nantod.2014.04.013
[56] Wendisch, F. J.; Rey, M.; Vogel, N.; Bourret, G. R. Large-Scale Synthesis of Highly Uniform Silicon Nanowire Arrays Using Metal-Assisted Chemical Etching, Chem. Mater. 2020, 32, 21, 9425–9434, https:// DOI: 10.1021/acs.chemmater.0c03593
[57] Kumar, S.; Bhushan, P.; Bhattacharya, S., Fabrication of Nanostructures with Bottom-up Approach and Their Utility in Diagnostics, Therapeutics, and Others, Environmental, Chemical and Medical Sensors. 2017,167–198, https://doi: 10.1007/978-981-10-7751-7_8
[58] Baig, N.; Kammakakam, I.; Falatha, W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Mater. Adv., 2021, 2, 1821-1871, https://doi.org/10.1039/D0MA00807A
[59] Biswas, S.; Kole, A. K.; Kumbhakar, P. Observation of two-photon induced three-photon absorption in chemically synthesized silver nanostructures, Chem. Phys. Lett., 2015, 629, 70-75, https:// DOI:10.1016/j.cplett.2015.04.021
[60] Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 2002, 298, 2176-2179, https;// DOI: 10.1126/science.1077229
[61] Danks, A. E.; Hall, S. R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis, Mater. Horiz., 2016, 3, 91-112, https://doi.org/10.1039/C5MH00260E
[62] Bokov, D. et al., Nanomaterial by Sol-Gel Method: Synthesis and Application, Adv. Mater. Sci. Eng., 2021, 2021, 1-21, https://doi.org/10.1155/2021/5102014
[63] Jenkins, J. A.; Wax, T. J.; Zhao, J. Seed-Mediated Synthesis of Gold Nanoparticles of Controlled Sizes to Demonstrate the Impact of Size on Optical Properties, J. Chem. Educ., 2017, 94, 8, 1090–1093, https://DOI:10.1021/acs.jchemed.6b00941
[64] Walker, N. et al., Extracting structured seed-mediated gold nanorod growth procedures from scientific text with LLMs, Digital Discovery, 2023, 2, 1768-1782,https://doi.org/10.1039/D3DD00019B
[65] Biswas, S.; Kole, A. K.; Tiwary, C. S.; Kumbhakar, P. Enhanced nonlinear optical properties of graphene oxide–silver nanocomposites measured by Z-scan technique, RSC Adv., 2016, 6, 10319-10325, https://doi.org/10.1039/C5RA21000C
[66] Vanlalveni, C. et al., Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature, RSC Adv., 2021,11, 2804-2837, https://doi.org/10.1039/D0RA09941D
[67] Iravani, S. Green synthesis of metal nanoparticles using plants, Green Chem., 2011,13, 2638-2650, https://doi.org/10.1039/C1GC15386B
[68] Jin, R. et al., Photoinduced conversion of silver nanospheres to nanoprisms, Science, 2001, 294, 1901-1903, https: DOI: 10.1126/science.1066541
[69] Sun, Y.; Yin,Y.; Mayers, B. T.; Herricks, T.; Xia, Y. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone), Chem. Mater., 2002,14, 4736–4745, https:// 10.1021/CM020587B
[70] Coskun, S.; Aksoy, B.; Unalan, H. E. Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study, Cryst. Growth Des., 2011, 11, 4963–4969, https://doi.org/10.1021/cg200874g
[71] Pal, T.; Sau, T. K.; Jana, N. R. Redox Catalytic Properties of Palladium Nanoparticles: Surfactant and Electron Donor−Acceptor Effects, Langmuir, 1997, 13, 1481–1485, https:// DOI:10.1021/la990507r
[72] Oliveira, M.J., Quaresma, P., Peixoto de Almeida, M. et al. Office paper decorated with silver nanostars - an alternative cost effective platform for trace analyte detection by SERS. Sci. Rep., 2017, 7, 2480, https://doi.org/10.1038/s41598-017-02484-8
[73] Kumbhakar, P.; Biswas, S.; Tiwary, C. S.; Kumbhakar, P. Near white light emission and enhanced photocatalytic activity by tweaking surface defects of coaxial ZnO@ZnS core-shell nanorods, J. Appl. Phys., 2017, 121, 144301, https://doi.org/10.1063/1.4980011
[74] Xia, H.; Bai, S.; J. Hartmann and D. Wang, Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction, Langmuir, 2010,26, 3585–3589, https://doi.org/10.1021/la902987w
[75] Steinigeweg, D.; Schlücker, S. Monodispersity and size control in the synthesis of 20–100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol–water mixtures, Chem. Commun., 2012,48, 8682-8684,https://doi.org/10.1039/C2CC33850E
[76] Li, H. et al., Synthesis of Monodisperse, Quasi-Spherical Silver Nanoparticles with Sizes Defined by the Nature of Silver Precursors, Langmuir, 2014, 30, 2498–2504, https:// DOI: 10.1021/la4047148
[77] Bastús, N. G.; Merkoçi, F.; Piella, J.; Puntes, V. Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties, Chem. Mater., 2014, 26, 2836–2846, https:// DOI:10.1021/cm500316k
[78] Choudhury, R,; Misra, T. K. Gluconate stabilized silver nanoparticles as a colorimetric sensor for Pb2+ , Colloids Surf. A: Physicochem. Eng. Asp., 2018, 545, 179-187, https:// DOI:10.1016/j.colsurfa.2018.02.051
[79] Yu, D.; Yam, V. W. Controlled Synthesis of Monodisperse Silver Nanocubes in Water, J. Am. Chem. Soc., 2004, 126, 13200–13201, https:// DOI: 10.1021/ja046037r
[80] Zhang, L. et al., Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature, Nanoscale, 2015, 7, 13420–13426, https://doi.org/10.1039/C5NR02611C
[81] Zhou. S. Facile Synthesis of Silver Nanocubes with Sharp Corners and Edges in an Aqueous Solution, ACS Nano, 2016, 10, 9861–9870, https://doi.org/10.1021/acsnano.6b05776
[82] Pastoriza-Santos, I.; Liz-Marzán, L. M. Synthesis of Silver Nanoprisms in DMF, Nano Lett., 2002, 2, 903–905, https:// DOI:10.1021/nl025638i
[83] Aherne, D.; Ledwith D. M.; Gara, M.; Kelly, J. M. Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature, Adv. Funct. Mater., 2008, 18, 2005–2016, https://doi.org/10.1002/adfm.200800233
[84] Dong X.; Ji X.; Jing, J.; Li, M.; Li, J.; Yang, W. Synthesis of Triangular Silver Nanoprisms by Stepwise Reduction of Sodium Borohydride and Trisodium Citrate, J. Phys. Chem. C, 2010, 114, 2070–2074, https:// DOI:10.1021/JP909964K
[85] Xu, X. et al., Synthesis of triangular silver nanoprisms and studies on the interactions with human serum albumin, J. Mol. Liq., 2016, 220, 14-20, https://doi.org/10.1016/j.molliq.2016.02.103
[86] Yakoh, A.; Rattanarat, P.; Siangproh, W.; Chailapakul, O. Simple and selective paper-based colorimetric sensor for determination of chloride ion in environmental samples using label-free silver nanoprisms, Talanta. 2018, 178, 134-140,https:// DOI: 10.1016/j.talanta.2017.09.013
[87] Haber, J. M.; Sokolov, K. Dimensional Design for Surface-Enhanced Raman Spectroscopy, Langmuir, 2017, 33, 10525–10530, https://doi.org/10.1021/acsmaterialsau.2c00005
[88] Dong, X. et al. Synthesis of Triangular Silver Nanoprisms by Stepwise Reduction of Sodium Borohydride and Trisodium Citrate, J. Phys. Chem. C2010, 114, 2070–2074, https:// DOI:10.1021/jp909964k
[89] He, X.; Zhao, X. Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies: Application to metal-enhanced fluorescence (MEF), Appl. Surf. Sci. 2009, 255, 7361–7368, https://doi.org/10.1038/srep10196
[90] Guo, B. et al. 2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications, J Mater Sci: Mater Electron., 2019, 13, 625–630, https://doi.org/10.1002/lpor.201800327
[91] Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods, Chem. Commun., 2001, 617, 617–618,https://doi.org/10.1039/B100521I
[92] Sun, Y.; Mayers, B.; Xia, Y. Size-Dependence of Surface Plasmon Resonance and Oxidation for Pd Nanocubes Synthesized via a Seed Etching Process, Nano Lett., 2003,3, 5, https://DOI: 10.1021/nl0508826
[93] Zhang, D.; Qi, L.; Yang, J.; Ma, J.; Cheng, H.; Huang, L. Wet Chemical Synthesis of Silver Nanowire Thin Films at Ambient Temperature, Chem. Mater. 2004, 16, 872-876, https://doi.org/10.1021/cm0350737
[94] X. Gu, C. Nie, Y. Lai, C. Lin, Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions, Mater. Chem. Phys. 2006, 96, 217–222, https:// DOI:10.1016/j.matchemphys.2005.07.006
[95] A. Roy et al., Directional growth of Ag nanorod from polymeric silver cyanide: A potential substrate for concentration dependent SERS signal enhancement leading to melamine detection, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 183, 402–407, https://doi.org/10.1016/j.saa.2017.04.074
[96] M. B. Gebeyehu, T. F. Chala, S. Y. Chang, C. Wu and J. Lee, Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method, RSC Adv., 2017, 7, 16139-16148, https://doi.org/10.1039/C7RA00238F
[97] H. Xu et al., Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior, Photon. Res.2017, 5, 27-32, https://doi.org/10.1364/PRJ.5.000027
[98] J. Xu, J. Hu, C. Peng, H. Liu, Y. Hu, A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant, J. Colloids and Interface Sci., 2006, 298, 689–693, https//DOI: 10.1016/j.jcis.2005.12.047
[99] D. Chen, X. Qiao, X. Qiu, J. Chen and R. Jiang, Synthesis and electrical properties of uniform silver nanoparticles for electronic applications, J. Colloid and Interface Sci., 2010, 344, 286–291, https:// DOI:10.1007/s10853-008-3204-y
[100] B. K. Jena, B. K. Mishra and S. Bohidar, Controlled Synthesis of Monodisperse Silver Nanocubes in Water, J. Phys. Chem. C, 113, 33, 14753-14758, https://doi.org/10.1039/D3NA00163F
[101] H. Liang, Z. Li, W. Wang, Y. Wu and H. Xu, Highly Surface-roughened “Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering, Adv. Mater. 2009, 21, 4614–4618, https:// DOI:10.3390/nano11123184
[102] A. Pourjavadi and R. Soleyman, Novel silver nano-wedges for killing microorganisms, Mater. Res. Bull. 2011, 46, 1860–1865, https://doi.org/10.1016/j.materresbull.2011.07.040
[103] S. Roy, C. M. Ajmal, S. Baik and J.Kim, Silver nanoflowers for single-particle SERS with 10 pM sensitivity, Nanotechnology, 2017, 28, 465705-465728, https://doi: 10.1088/1361-6528/aa8c57.
[104] P. Yang, J. Zheng, Y. Xu, Q. Zhang, L. Jiang, Colloidal Synthesis and Applications of Plasmonic Metal Nanoparticles, Adv. Mater. 2016,28, 10508-10517, https://doi.org/10.1002/adma.201601739
[105] Q. Zhang, Y. N. Tan, J. Xie, J. Y. Lee, Colloidal Synthesis of Plasmonic Metallic Nanoparticles, Plasmonics, 2009,4, 9–22, https://doi.org/10.1007/s11468-008-9067-x
[106] R. Becker and W. Döring, Kinetic treatment of nucleation in supersaturated vapors, Ann. Phys., 1935, 24, 719–752.
[107] V. K. LaMer and R. H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc., 1950, 72, 4847–4854, https://doi.org/10.1021/ja01167a001
[108] J. Polte, Fundamental growth principles of colloidal metal nanoparticles – a new perspective, Cryst. Eng. Comm, 2015, 17, 6809–6830, https://doi.org/10.1039/C5CE01014D
[109] Y. Jun, D. Kim and C. W. Neil, Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces, Acc. Chem. Res., 2016,49, 1681–1690, https://doi.org/10.1021/acs.accounts.6b00208
[110] V. K. LaMer, Kinetics and Mechanisms of Aggregative Nanocrystal Growth, Ind. Eng. Chem., 1952, 44, 1270–1277, https://doi.org/10.1021/cm402139r
[111] S. T. Gentry, S.F. Kendra and M. W. Bezpalko, Nanocrystalline graphene at high temperatures: insight into nanoscale processes, J. Phys. Chem. C, 2011, 115, 12736–12741, DOI https://doi.org/10.1039/C9NA00055K
[112] B. Ingham et al., How Nanoparticles Coalesce: An in Situ Study of Au Nanoparticle Aggregation and Grain Growth, Chem. Mater., 2011, 23, 3312–3317, https://doi.org/10.1021/cm200354d
[113] S. E. H. Murph, C. J. Murphy, A. Leach and K. Gall, A possible oriented attachment growth mechanism for silver nanowire formation, Cryst. Growth Des., 2015,15, 1968–1974, https://DOI:10.1021/acs.cgd.5b00123
[114] M. S. Bakshi, How surfactants control crystal growth of nanomaterials, Cryst. Growth Des., 2016, 16, 1104–1133, https:// DOI:10.1021/acs.cgd.5b01465
[115] K. M. Koczkur, S. Mourdikoudis, L. Polavarapu and S. E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis, Dalton Transac., 2015,44, 17883-17905,https://doi.org/10.1039/C5DT02964C
[116] X. Xia, J. Zeng, Q. Zhang, C. H. Moran and Y. Xia. Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals, J. Phys. Chem. CNanomater. Interfaces., 2012, 116, 21647–21656, https:// DOI: 10.1021/jp306063p
[117] H. Wang, X. Qiao, J. Chena, X. Wang and S. Ding, Mechanisms of PVP in the preparation of silver nanoparticles, Mater. Chem. Phys. 2005, 94, 449-453, https:// DOI:10.1007/s11051-014-2723-5
[118] R. Mehra, Application of refractive index mixing rules in binary systems of hexadecane and heptadecane withn-alkanols at different temperatures, Proc. Indian Acad. Sci. (Chem. Sci.) 2003, 115, 147-154, https://doi.org/10.1007/BF02716982
[119] X. C. Jiang, W. M. Chen, C. Y. Chen, S. X.Xiong and A. B. Yu, Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach, Nanoscale Res. Lett., 2011, 6, 32-40,https://doi.org/10.1039/D0NA01013H
[120] H. Chen et al., Structural properties of silver nanorods with fivefold symmetry, Micron., 2004, 35, 469–474, https://doi.org/10.1016/j.micron.2004.02.008
[121] Q. Yu et al., Strong crystal size effect on deformation twinning, Nature, 2010, 463, 335–343, https:// DOI: 10.1038/nature08692
[122] F. Baletto and R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Rev. Mod. Phys., 2005,77, 371–423, https://doi.org/10.1103/RevModPhys.77.371
[123] B. Wiley, Y. Sun and Y. N. Xia, Synthesis of Silver Nanostructures with Controlled Shapes and Properties, Acc. Chem. Res., 2007, 40,1067–1076, https:// DOI: 10.1021/ar7000974
[124] J. Jana, M. Ganguly and T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application, RSC Adv., 2016, 6, 86174-86211,https://doi.org/10.1039/C6RA14173K
[125] M. A. Garcia, J. Phys. D: Appl. Phys., Surface plasmons in metallic nanoparticles: fundamentals and applications, 2011,44, 283001-283021, https://DOI:10.1088/0022-3727/44/28/283001
[126] C. Noguez, Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment, J. Phys. Chem. C, 2007,111, 3806–3819, https://doi.org/10.1021/jp066539m
[127] G. Mie, Contributions to the Optics of Turbid Media, Particularly of Colloidal Metal solutions, Ann. Phys., 1908, 25, 377-445, https://doi.org/10.1002/andp.19083300302
[128] A. Alabastri et al., Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature, Materials, 2013, 6, 4879-4910, https://doi.org/10.3390/ma6114879
[129] U. Kreibig and M. Vollmer, Optical properties of metal clusters. Springer; Berlin: 1995, https://doi.org/10.1007/978-3-662-09109-8
[130] R. Gans, about the shape of ultramicroscopic gold particles, Annalen der Physik, 1912, 342, 881-900, http://dx.doi.org/10.1002/andp.19123420503
[131] S. Link and M. El-Sayed, Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant, J. Phys. Chem. B, 2005, 109, 10531-10532, https://doi.org/10.1021/jp058091f
[132] S. Borja, C. A. Paula, M. L. Laura and M. L. Luis, Effect of the Dielectric Properties of Substrates on the Scattering Patterns of Gold Nanorods, Nano Today, 2009, 4, 244–251, https:// DOI:10.1021/nn200951c
[133] O. A. Yeshchenko, I. S. Bondarchuk, Y. M. Losytskyy, A. A. Alexeenko, Low-Temperature Plasmonics of Metallic Nanostructures, Plasmonics, 2014,9, 93–101, https:// DOI:10.1007/978-3-030-18834-4_11
Downloads
Abstract Display: 435
PDF Downloads: 219 Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.
