Structural and Optical Characterization of Starch Granules Due to the Effect of α-Amylase
DOI:
https://doi.org/10.63635/mrj.v1i1.10Keywords:
Starch, α-Amylase, optical microscopy, X-Ray diffraction, FTIR spectroscopyAbstract
Starch, one of the most prevalent polysaccharides in plants, is a key component of the human diet. It’s morphology and chemical composition can vary depending on the plant species from which it is derived. In this work, we examined starch granules from potato and corn using a range of techniques, including biochemical Dinitrosalicylic Acid Test, optical imaging, and various spectroscopic methods. We also explored the impact of the starch-digesting enzyme α-Amylase on potato and corn starch under different temperature and pH conditions. We observed basic morphology through optical microscopy, analyzed chemical composition using Fourier Transform Infrared Spectroscopy, assessed crystallinity with X-Ray Diffraction and detailed results are reported in this study.
Downloads
References
[1] Martin, C.; Smith, A. Starch Biosynthesis. Plant J. 1995, 7, 971.
[2] Wang, T.; Bogracheva, T.; Hedley, C. Starch: as simple as A, B, C? J. Exp. Bot. 1998, 49, 481–502.
[3] Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - Stärke 2010, 62, 389–420, https://doi.org/10.1002/star.201000013.
[4] Blennow, A.; Hansen, M.; Schulz, A.; Jørgensen, K.; Donald, A.; Sanderson, J. The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy. J. Struct. Biol. 2003, 143, 229–241, https://doi.org/10.1016/S1047-8477(03)00134-2.
[5] Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56, https://doi.org/10.3390/agronomy7030056.
[6] Gallant, D.J.; Bouchet, B.; Buleon, A.; Pérez, S. Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr. 1992, 46(Suppl 2), 3–16.
[7] Jane, J. Starch Properties, Modifications, and Applications. J. Macromol. Sci. A 1995, 32, 751–757.
[8] Yuan, R.C.; Thompson, D.B.; Boyer, C.D. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines. Cereal Chem. 1993, 70, 81–89.
[9] Zhang, G.; Ao, Z.; Hamaker, B. Slow Digestion Property of Native Cereal Starches. Biomacromolecules 2006, 7, 3252–3258, https://doi.org/10.1021/bm060298s.
[10] Birt, D.; Boylston, T.; Hendrich, S.; Jane, J.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.; Rowling, M.; Schalinske, K.; Scott, M.; Whitley, E. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4, 587–601, https://doi.org/10.3945/an.113.004325.
[11] El-Fallal, A.; Abou, M.; El-Sayed, A.; Omar, N. Starch and Microbial α-Amylases: From Concepts to Biotechnological Applications. Carbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology 2012, https://doi.org/10.5772/47952.
[12] Peyrot des Gachons, C.; Breslin, P. Salivary Amylase: Digestion and Metabolic Syndrome. Curr. Diab. Rep. 2016, 16, 102, https://doi.org/10.1007/s11892-016-0794-7.
[13] Ramasubbu, N.; Paloth, V.; Luo, Y.; Brayer, G.; Levine, M. Structure of Human Salivary α-Amylase at 1.6 Å Resolution: Implications for its Role in the Oral Cavity. Acta Crystallogr. Sect. D Biol. Crystallogr. 1996, 52, 435–446, https://doi.org/10.1107/S0907444996002983.
[14] Mitidieri, S.; Souza Martinelli, A.; Schrank, A.; Vainstein, M. Enzymatic detergent formulation containing amylase from Aspergillus niger: A comparative study with commercial detergent formulations. Bioresour. Technol. 2006, 97, 1217–1224, https://doi.org/10.1016/j.biortech.2005.05.016.
[15] van der Maarel, M.; van der Veen, B.; Uitdehaag, J.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 2002, 94, 137–155, https://doi.org/10.1016/S0168-1656(01)00407-2.
[16] Ahlawat, S.; Dhiman, S.S.; Battan, B.; Mandhan, R.P.; Sharma, J. Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem. 2009, 44, 521–526, https://doi.org/10.1016/j.procbio.2009.01.003.
[17] Sivaramakrishnan, S.; Gangadharan, D.; Nampoothiri, K.M.; Soccol, C.R.; Pandey, A. α-Amylases from microbial sources–an overview on recent developments. Food Technol. Biotechnol. 2006, 44, 173–184.
[18] Reologica, C.; Termica, F.Y.F.; Del Almidon, D.S.D.H. Physicochemical, functional thermal, and rheological characterization of starch from huauzontle seeds. Agrociencia 2014, 48, 789–803.
[19] Slepkov, A.; Ridsdale, A.; Pegoraro, A.; Moffatt, D.; Stolow, A. Multimodal CARS microscopy of structured carbohydrate biopolymers. Biomed. Opt. Express 2010, 1, 1347–1357, https://doi.org/10.1364/BOE.1.001347.
[20] Hassan, L.G.; Muhammad, A.B.; Aliyu, R.U.; Idris, Z.M.; Izuagie, T.; Umar, K.J.; Sani, N.A. Extraction and characterization of starches from four varieties of Mangifera indica seeds. J. Appl. Chem. 2013, 3, 6–23.
[21] Liu, X.D.; Xu, Y. A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Bioresour. Technol. 2008, 99, 4315–4320, https://doi.org/10.1016/j.biortech.2007.08.070.
Downloads


Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.