Base Substitutions in Genomes Due to Deamination and Oxidation of DNA Bases, Favoring Genome Compositional Biases

Authors

  • Nishita Deka Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, INDIA-784028 Author
  • Pratyush Kumar Beura Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, INDIA-784028 Author
  • Monika Jain Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, INDIA-784028 Author
  • Najima Ahmed Centre for Multidisciplinary Research, Tezpur University, Tezpur, Assam, INDIA-784028 Author
  • Ramesh Chandra Deka Department of Chemical Sciences, Tezpur University, Tezpur, Assam, INDIA-784028 Author
  • Siddhartha Shankar Satapathy Department of Computer Science & Engineering, Tezpur University, Tezpur, Assam, INDIA-784028 Author
  • Suvendra Kumar Ray Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, INDIA-784028 Author

DOI:

https://doi.org/10.63635/mrj.v1i4.188

Keywords:

Genome G+C %, Base substitution mutation, Deamination, Oxidative lesions, Transition, Transversion, DNA repair

Abstract

The genome G+C content of bacteria varies widely, from 13% to 75%, which is influenced by both environmental and internal mutation pressure; however, the precise determinants of this variability remain unresolved. Mutation-based models, such as Sueoka’s directional mutation hypothesis, suggest that G+C content arises from mutational pressures within an organism without providing any specific advantage to it. Though there are several advantages associated with genome G+C%, there is limited evidence, favoring any selection mechanism for G+C% evolution. Hence, the genome G+C% in organisms is largely studied under the neutral theory of evolution. Cytosine deamination and guanine oxidation are recognized as major contributors to A/T mutational bias, producing frequent substitutions such as C→T transitions and G→T transversions, respectively. While these mechanisms leading to A+T enrichment have been well studied, counteracting processes that promote G+C enrichment in organisms are comparatively less understood. This review mainly highlights adenine as an underexplored contributor: its deamination and oxidation yield A→G and A→C substitutions, respectively, both biased toward increased G+C content. We further consider how the efficiency of DNA repair mechanisms may shape G+C content across evolutionary timescales. Together, these perspectives address a gap in the current understanding of the mutational forces influencing genome composition.

Downloads

Download data is not yet available.

Author Biographies

  • Nishita Deka, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, INDIA-784028

    Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, INDIA-784028 and 

    Centre for Bioinformatics & Computational Biology, Tezpur University, Tezpur, Assam, INDIA-784028

  • Ramesh Chandra Deka, Department of Chemical Sciences, Tezpur University, Tezpur, Assam, INDIA-784028

    Department of Chemical Sciences, Tezpur University, Tezpur, Assam, INDIA-784028, Centre for Multidisciplinary Research, Tezpur University, Tezpur, Assam, INDIA-784028 and Centre for Bioinformatics & Computational Biology, Tezpur University, Tezpur, Assam, INDIA-784028

  • Siddhartha Shankar Satapathy, Department of Computer Science & Engineering, Tezpur University, Tezpur, Assam, INDIA-784028

    Department of Computer Science & Engineering, Tezpur University, Tezpur, Assam, INDIA-784028, Centre for Multidisciplinary Research, Tezpur University, Tezpur, Assam, INDIA-784028 and Centre for Bioinformatics & Computational Biology, Tezpur University, Tezpur, Assam, INDIA-784028

  • Suvendra Kumar Ray, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, INDIA-784028

    Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, INDIA-784028 and Centre for Bioinformatics & Computational Biology, Tezpur University, Tezpur, Assam, INDIA-784028

References

[1] Lassalle, F.; Périan, S.; Bataillon, T.; Nesme, X.; Duret, L.; Daubin, V. GC-content evolution in bacterial genomes: the biased gene conversion hypothesis expands. PLoS Genetics, 2015, 11(2): e1004941.https://doi.org/10.1371/journal.pgen.1004941

[2] Satapathy, S.S.; Dutta, M.; Ray, S.K. Variable correlation of genome GC% with transfer RNA number as well as with transfer RNA diversity among bacterial groups. Microbiological Research, 2010, 165(3): 232–242.https://doi.org/10.1016/j.micres.2009.06.003

[3] Bansal, K.; Kumar, S.; Kaur, A.; Singh, A.; Patil, P.B. Deep phylo-taxono genomics reveals Xylella as a variant lineage of plant-associated Xanthomonas. Genomics, 2021, 113(6): 3989–4003.https://doi.org/10.1016/j.ygeno.2021.09.019

[4] Guidot, A.; Jiang, W.; Ferdy, J.B.; Thébaud, C.; Barberis, P.; Gouzy, J.; et al. Multihost experimental evolution of Ralstonia solanacearum. Molecular Biology and Evolution, 2014, 31(11): 2913–2928.https://doi.org/10.1093/molbev/msu236

[5] Hildebrand, F.; Meyer, A.; Eyre-Walker, A. Evidence of selection upon genomic GC-content in bacteria. PLoS Genetics, 2010, 6(9): e1001107.https://doi.org/10.1371/journal.pgen.1001107

[6] Chuckran, P.F.; Flagg, C.; Propster, J.; Rutherford, W.A.; Sieradzki, E.T.; Blazewicz, S.J.; et al. Edaphic controls on genome size and GC content. Soil Biology and Biochemistry, 2023, 178: 108935.https://doi.org/10.1016/j.soilbio.2023.108935

[7] Schell, M.A.; Karmirantzou, M.; Snel, B.; Vilanova, D.; Berger, B.; Pessi, G.; et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proceedings of the National Academy of Sciences of the USA, 2002, 99(22): 14422–14427.https://doi.org/10.1073/pnas.222409599

[8] Kushiro, A.; Shimizu, M.; Tomita, K. Molecular cloning and sequence determination of the tuf gene of Thermus thermophilus. European Journal of Biochemistry, 1987, 170(1–2): 93–98. https://doi.org/10.1111/j.1432-1033.1987.tb13693.x

[9] Kagawa, Y.; Nojima, H.; Nukiwa, N.; Ishizuka, M.; Nakajima, T.; Yasuhara, T.; et al. High GC content in the third codon position of an extreme thermophile. Journal of Biological Chemistry,1984, 259(5): 2956–2960.

[10] Galtier, N.; Lobry, J.R. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature. Journal of Molecular Evolution, 1997, 44(6): 632–636.https://doi.org/10.1007/PL00006186

[11] Nayfach, S.; Shi, Z.J.; Seshadri, R.; Pollard, K.S.; Kyrpides, N.C. New insights from uncultivated genomes of the global human gut microbiome. Nature, 2019, 568(7753): 505–510.https://doi.org/10.1038/s41586-019-1058-x

[12] Sueoka, N. On the genetic basis of variation and heterogeneity of DNA base composition. Proceedings of the National Academy of Sciences of the USA, 1962, 48(4): 582–592.https://doi.org/10.1073/pnas.48.4.582

[13] Xia, X.; Xie, Z.; Li, W.-H. Effects of GC content and mutational pressure on exon lengths. Journal of Molecular Evolution, 2003, 56(3): 362–370.https://doi.org/10.1007/s00239-002-2413-y

[14] Sueoka, N. Directional mutation pressure and neutral molecular evolution. Proceedings of the National Academy of Sciences of the USA, 1988, 85(8): 2653–2657.https://doi.org/10.1073/pnas.85.8.2653

[15] Hershberg, R.; Petrov, D.A. Evidence that mutation is universally biased towards AT in bacteria. PLoS Genetics, 2010, 6(9): e1001115.https://doi.org/10.1371/journal.pgen.1001115

[16] Rocha, E.P.C.; Feil, E.J. Mutational patterns cannot explain genome composition. PLoS Genetics, 2010, 6(9): e1001104.https://doi.org/10.1371/journal.pgen.1001104

[17] Akashi, M.; Yoshikawa, H. Relevance of GC content to the conservation of DNA polymerase III. Frontiers in Microbiology, 2013, 4: 266.https://doi.org/10.3389/fmicb.2013.00266

[18] Graur, D. Molecular and Genome Evolution. Sinauer Associates, Sunderland, MA, USA, 2015.

[19] Hanson, G.; Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nature Reviews Molecular Cell Biology, 2018, 19(1): 20–30. https://doi.org/10.1038/nrm.2017.91

[20] Liu, Y. A code within the genetic code: codon usage regulates co-translational protein folding. Cell Communication and Signaling, 2020, 18(1): 145.https://doi.org/10.1186/s12964-020-00642-6

[21] Osawa, S.; Ohama, T.; Yamao, F.; Muto, A.; Jukes, T.H.; Ozeki, H.; et al. Directional mutation pressure and tRNA choice. Proceedings of the National Academy of Sciences of the USA, 1988, 85(4): 1124–1128.https://doi.org/10.1073/pnas.85.4.1124

[22] Abdel-Haleem, H. The origins of genome architecture. Journal of Heredity, 2007, 98(6): 633–634.https://doi.org/10.1093/jhered/esm071

[23] Sankoff, D.; Cedergren, R.J.; Lapalme, G. Frequency of indels and substitutions in 5S rRNA. Journal of Molecular Evolution, 1976, 7(2): 133–149.https://doi.org/10.1007/BF01732261

[24] Beura, P.K.; Sen, P.; Aziz, R.; Satapathy, S.S.; Ray, S.K. Nucleotide polymorphism in intergenic regions. Journal of Genetics, 2023, 102(1): 1–7. https://doi.org/10.1007/s12041-023-01431-4

[25] Vogel, F.; Kopun, M. Higher frequencies of transitions among point mutations. Journal of Molecular Evolution, 1977, 9(2): 159–180.https://doi.org/10.1007/BF01732668

[26] Collins, D.W.; Jukes, T.H. Rates of transition and transversion. Genomics, 1994, 20(3): 386–396.https://doi.org/10.1006/geno.1994.1208

[27] Aziz, R.; Sen, P.; Beura, P.K.; Das, S.; Tula, D.; Dash, M.; et al. Improved estimation of synonymous and nonsynonymous sites. DNA Research, 2022,29(4): dsac023.https://doi.org/10.1093/dnares/dsac023

[28] Kreutzer, D.A.; Essigmann, J.M. Oxidized, deaminated cytosines as a source of C→T transitions. Proceedings of the National Academy of Sciences of the USA, 1998, 95(7): 3578–3582.https://doi.org/10.1073/pnas.95.7.3578

[29] Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C.C. p53 mutations in human cancers. Science, 1991, 253(5015): 49–53. https://doi.org/10.1126/science.1905840

[30] Tan, X.; Grollman, A.P.; Shibutani, S. Mutagenic properties of oxidized DNA lesions. Carcinogenesis, 1999, 20(12): 2287–2292.https://doi.org/10.1093/carcin/20.12.2287

[31] Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair and mutagenesis. Environmental and Molecular Mutagenesis, 2017,58(5): 235–263.https://doi.org/10.1002/em.22087

[32] Andrés, C.M.C.; de la Lastra, J.M.P.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Oxidative and nitrative DNA modifications. International Journal of Molecular Sciences, 2023, 24(20): 15240.https://doi.org/10.3390/ijms242015240

[33] Coulondre, C.; Miller, J.H.; Farabaugh, P.J.; Gilbert, W. Molecular basis of base substitution hotspots. Nature,1978, 274(5673): 775–780.https://doi.org/10.1038/274775a0

[34] Parry, T.E. On the mutagenic action of adenine. Leukemia Research, 2007, 31(12): 1621–1624.https://doi.org/10.1016/j.leukres.2007.03.011

[35] Sidorkina, O.; Saparbaev, M.; Laval, J. Nitrous acid-induced mutagenesis. Mutagenesis, 1997, 12(1): 23–28. https://doi.org/10.1093/mutage/12.1.23

[36] Freese, E. Molecular mechanisms of mutations. Molecular Genetics, 1963, 207: 1–14.

[37] Lindahl, T. Instability and decay of DNA. Nature, 1993, 362(6422): 709–

[38] Shapiro, R.; Pohl, S.H. Reaction of ribonucleosides with nitrous acid. Biochemistry, 1968, 7(1): 448–455.https://doi.org/10.1021/bi00842a051

[39] Jung, H.; Hawkins, M.A.; Lee, S. Bypass of deaminated purines by TLS polymerases. Biochemical Journal, 2020, 477(24): 4797–4810.https://doi.org/10.1042/BCJ20200549

[40] Shapiro, R.; Klein, R.S. Deamination of cytidine and cytosine. Biochemistry, 1966, 5(7): 2358–2362.https://doi.org/10.1021/bi00871a041

[41] Gates, K.S. Chemical processes that damage DNA. Chemical Research in Toxicology, 2009, 22(11): 1747–1760.https://doi.org/10.1021/tx900136h

[42] Frederico, L.A.; Kunkel, T.A.; Shaw, B.R. Cytosine deamination in mismatched base pairs. Biochemistry, 1993, 32(26): 6523–6530.https://doi.org/10.1021/bi00078a014

[43] Lindahl, T.; Nyberg, B. Heat-induced cytosine deamination. Biochemistry, 1974, 13(16): 3405–3410.https://doi.org/10.1021/bi00713a035

[44] Kino, K.; Hirao-Suzuki, M.; Morikawa, M.; Sakaga, A.; Miyazawa, H. Guanine oxidation products. Genes & Environment, 2017, 39(1): 21.https://doi.org/10.1186/s41021-017-0084-0

[45] Wood, M.L.; Esteve, A.; Morningstar, M.L.; Kuziemko, G.M.; Essigmann, J.M. Genetic effects of oxidative DNA damage. Nucleic Acids Research, 1992, 20(22): 6023–6032.https://doi.org/10.1093/nar/20.22.6023

[46] Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress and guanine tracts. International Journal of Molecular Sciences, 2019, 20(17): 4258.https://doi.org/10.3390/ijms20174258

[47] Cadet, J.; Douki, T.; Gasparutto, D.; Ravanat, J.L. Oxidative damage to DNA. Mutation Research, 2003, 531(1–2): 5–23. https://doi.org/10.1016/j.mrfmmm.2003.09.009

[48] Kruchinin, A.A.; Kamzeeva, P.N.; Zharkov, D.O.; Aralov, A.V.; Makarova, A.V. 8-Oxoadenine in mammals. International Journal of Molecular Sciences, 2024, 25(2): 1342.https://doi.org/10.3390/ijms25021342

[49] Hahm, J.Y.; Park, J.; Jang, E.S.; Chi, S.W. 8-Oxoguanine: from damage to regulation. Experimental & Molecular Medicine, 2022, 54(10): 1626–1642.https://doi.org/10.1038/s12276-022-00862-5

[50] Koag, M.C.; Jung, H.; Lee, S. Mutagenesis mechanism of oxidative adenine lesions. Nucleic Acids Research, 2020, 48(9): 5119–5134.https://doi.org/10.1093/nar/gkaa230

[51] Koag, M.C.; Jung, H.; Lee, S. Mutagenic replication of oxidized adenine. Journal of the American Chemical Society, 2019, 141(11): 4584–4596.https://doi.org/10.1021/jacs.8b12987

[52] Kow, Y.W. Repair of deaminated bases in DNA. Free Radical Biology and Medicine, 2002, 33(7): 886–893.https://doi.org/10.1016/S0891-5849(02)00967-3

[53] Cao, W. Endonuclease V and DNA deamination repair. Cellular and Molecular Life Sciences, 2013, 70(17): 3145–3156.https://doi.org/10.1007/s00018-013-1321-4

[54] Shi, K.; Moeller, N.H.; Banerjee, S.; McCann, J.L.; Carpenter, M.A.; Yin, L.; et al. Recognition of deaminated DNA by endonuclease Q. Proceedings of the National Academy of Sciences of the USA, 2021, 118(10): e2021120118.https://doi.org/10.1073/pnas.2021120118

[55] David, S.S.; O’Shea, V.L.; Kundu, S. Base-excision repair of oxidative DNA damage. Nature, 2007, 447(7147): 941–950.https://doi.org/10.1038/nature05978

[56] Rozelle, A.L.; Cheun, Y.; Vilas, C.K.; Koag, M.C.; Lee, S. DNA interstrand cross-links induced by oxidative adenine lesions. Nature Communications, 2021, 12(1): 1897.https://doi.org/10.1038/s41467-021-22246-0

[57] Muramatsu, M.; Kinoshita, K.; Fagarasan, S.; Yamada, S.; Shinkai, Y.; Honjo, T. Activation-induced cytidine deaminase in hypermutation. Cell, 2000, 102(5): 553–563.https://doi.org/10.1016/S0092-8674(00)00078-7

[58] Di Noia, J.M.; Neuberger, M.S. Molecular mechanisms of antibody somatic hypermutation. Annual Review of Biochemistry, 2007, 76: 1–22. https://doi.org/10.1146/annurev.biochem.76.061705.090740

[59] Harris, R.S.; Dudley, J.P. APOBECs and virus restriction. Virology, 2015, 479–480: 131–145.https://doi.org/10.1016/j.virol.2015.03.012

[60] Rai, K.; Huggins, I.J.; James, S.R.; Karpf, A.R.; Jones, D.A.; Cairns, B.R. DNA demethylation via deamination. Cell, 2008, 135(7): 1201–1212.https://doi.org/10.1016/j.cell.2008.11.042

[61] Andersson, D.I.; Hughes, D. Gene amplification and adaptive evolution. Annual Review of Genetics, 2009, 43: 167–195.https://doi.org/10.1146/annurev-genet-102108-134805

[62] Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 2010, 74(3): 417–433.https://doi.org/10.1128/MMBR.00016-10

[63] Moxon, R.; Bayliss, C.; Hood, D. Bacterial contingency loci and adaptation. Annual Review of Genetics, 2006, 40: 307–333.https://doi.org/10.1146/annurev.genet.40.110405.090442

[64] Bahrami, H.; Greiner, T. The alkaline diet and the Warburg effect. World Nutrition, 2021, 12: 20–39.

[65] Hamanaka, R.B.; Chandel, N.S. Warburg effect and redox balance. Science, 2011, 334: 1215637.https://doi.org/10.1126/science.1215637

[66] Gonzalez, P.S.; O’Prey, J.; Cardaci, S.; Barthet, V.J.A.; Sakamaki, J.; Beaumatin, F.; et al. Mannose impairs tumour growth. Nature, 2018, 563(7733): 719–723.https://doi.org/10.1038/s41586-018-0729-3

[67] Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods. Pharmacognosy Reviews, 2010, 4(8): 118–126.https://doi.org/10.4103/0973-7847.70902

[68] Wang, H.; Cao, G.; Prior, R.L. Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 1996, 44(3): 701–705.https://doi.org/10.1021/jf950579y

Downloads

Statistics
Abstract Display: 53
PDF Downloads: 59
Dimension Badge

Published

2025-12-28

Issue

Section

Review Articles

How to Cite

Deka, N., Beura, P. K., Jain, M., Ahmed, N., Deka, R. C., Satapathy, S. S., & Ray, S. K. (2025). Base Substitutions in Genomes Due to Deamination and Oxidation of DNA Bases, Favoring Genome Compositional Biases. Multidisciplinary Research Journal, 1(4), 21-37. https://doi.org/10.63635/mrj.v1i4.188