DNA Damage Induced by Alcoholic Beverages and Repair Mechanism Pathways: A Review
DOI:
https://doi.org/10.63635/mrj.v1i4.190Keywords:
ADH, P450 2E1, Catalase, ALDH, DNA-acetaldehyde adduct, 8-Oxoguanine, DNA repairAbstract
Alcoholic beverages contains ethanol as the main component. Ethanol is metabolized into acetaldehyde, a Group 1 carcinogen, and other reactive by-products such as ROS and hydroxyl radicals. These metabolites can interact with DNA to form adducts and interstrand cross-links, leading to mutations and genomic instability, which are key contributors to alcohol-related cancers. Ethanol metabolism is mediated by critical enzymes - Alcohol Dehydrogenase (ADH), Cytochrome P450 2E1 (CYP2E1), Catalase, and Aldehyde Dehydrogenase (ALDH), which regulate both the generation and detoxification of these harmful intermediates. Every cell in our body owns a toolkit with which it can repair different types of DNA lesions. This review highlights the enzymatic pathways of ethanol metabolism, the formation of genotoxic by-products, and the cellular mechanisms that maintain genomic integrity. Understanding these processes provides crucial insights into the molecular basis of alcohol-induced carcinogenesis and may guide strategies for prevention and therapeutic intervention.
Downloads
References
[1] Zhao, B.; Li, J.; Sinha, S.; Qin, Z.; Kou, S. H.; Xiao, F.; Lei, H.; Chen, T.; Cao, W.; Ding, X.; Wang, S. M. Pathogenic variants in human DNA damage repair genes mostly arose in recent human history. BMC cancer2024, 24, 415. https://doi.org/10.1186/s12885-024-12160-6.
[2] Yousefzadeh, M.; Henpita, C.; Vyas, R.; Soto-Palma, C.; Robbins, P.; Niedernhofer, L.DNA damage-how and why we age? Elife, 2021,10, e62852. https://doi.org/10.7554/eLife.62852.
[3] Hakem, R. DNA‐damage repair; the good, the bad, and the ugly. The EMBO journal, 2008 27, 589-605. https://doi.org/10.1038/emboj.2008.15.
[4] Taylor, J. S. DNA, sunlight, and skin cancer. J Chem Ed ,1990, 67, 835-841. https://doi.org/10.1021/ed067p835.
[5] Lindahl, T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog Nucleic Acid Res Mol Biol. 1979 22, 135-192. https://doi.org/10.1016/s0079-6603(08)60800-4.
[6] Henle, E.S.; Linn, S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997 272, 31, 19095-19098. https://doi.org/10.1074/jbc.272.31.19095.
[7] Rydberg, B.; Lindahl, T. Nonenzymatic methylation of DNA by the intracellular methyl group donor S‐adenosyl‐L‐methionine is a potentially mutagenic reaction. EMBO J.1982 1, 211-216. https://doi.org/10.1002/j.1460-2075.1982.tb01149.x.
[8] Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016 1, 1245049. https://doi.org/10.1155/2016/1245049.
[9] Tubbs, A.; Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell, 2017, 168, 644-656, https://doi.org/10.1016/j.cell.2017.01.002
[10] [Ilhan, M.N.; Yapar, D. Alcohol consumption and alcohol policy. Turk J Med Sci. 2020, 50, 1197-1202, https://doi.org/10.3906/sag-2002-237.
[11] WHO 28 Jun 2024 Alcohol https://www.who.int/news-room/fact-sheets/detail/alcohol
[12] Guidolin, V.; Carlson, E.S.; Carrà, A., Villalta, P.W.; Maertens, L.A.; Hecht, S.S.; Balbo, S. Identification of new markers of alcohol-derived DNA damage in humans. Biomolecules, 2021, 11, 366, https://doi.org/10.3390/biom11030366.
[13] Rumgay, H.; Shield, K.; Charvat, H.; Ferrari, P.; Sornpaisarn, B.; Obot, I.; Soerjomataram, I. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 2021, 22, 1071-1080, https://doi.org/10.1016/S1470-2045(21)00279-5.
[14] Le Dare, B.; Lagente, V.; Gicquel, T. Ethanol and its metabolites: update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab Rev.2019, 51, 545-561, https://doi.org/10.1080/03602532.2019.1679169.
[15] Liu, L.; Chen, J. Advances in relationship between alcohol consumption and skin diseases. Clin Cosmet Investig Dermatol. 2023, 3785-3791, https://doi.org/10.2147/CCID.S443128.
[16] Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and cancer: epidemiology and biological mechanisms. Nutrients, 2021, 13, 3173, https://doi.org/10.3390/nu13093173.
[17] Paton, A. Alcohol in the body. Bmj, 2005 330, 85-87, https://doi.org/10.1136/bmj.330.7482.85 .
[18] Holford, N.H. Clinical pharmacokinetics of ethanol. Clin Pharmacokinet. 1987, 13, 273-292, https://doi.org/10.2165/00003088-198713050-00001.
[19] Farrés, J.; Moreno, A.; Crosas, B.; Peralba, J.M.; Allali‐Hassani, A.; Hjelmqvist, L.; Parés, X. Alcohol Dehydrogenase of Class IV (σσ‐ADH) from Human Stomach: cDNA Sequence and Structure/Function Relationships. Eur. J. Biochem. 1994 224, 549-557, https://doi.org/10.1111/j.1432-1033.1994.00549.x .
[20] Di, L.; Balesano, A.; Jordan, S.; Shi, S.M. The role of alcohol dehydrogenase in drug metabolism: beyond ethanol oxidation. AAPS J. 2021, 23, 20, https://doi.org/10.1208/s12248-020-00536-y.
[21] Edenberg, H.J. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health.2007, 30, 5–13,
[22] Chales S.L. The Discovery of the Microsomal Ethanol Oxidizing System and Its Physiologic and Pathologic Role. Drug Metab Rev. 2004,36,511-29, https://doi.org/10.1081/dmr-200033441.
[23] Lieber C.S. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev.1997, 77, 517-44, https://doi.org/10.1152/physrev.1997.77.2.517.
[24] Liangpunsakul, S.; Kolwankar, D.; Pinto, A.; Gorski, J.C.; Hall, S.D.; Chalasani, N. Activity of CYP2E1 and CYP3A enzymes in adults with moderate alcohol consumption: a comparison with nonalcoholics. Hepatology, 2005,41, 1144-1150, https://doi.org/10.1002/hep.20673.
[25] Jiang, Y.; Zhang, T.; Kusumanchi, P.; Han, S.; Yang, Z.; Liangpunsakul, S. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines, 2020, 8, 50, https://doi.org/10.3390/biomedicines8030050.
[26] Lu, Y.; Cederbaum, A.I. CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med.2008, 44 (5), 723–738. https://doi.org/10.1016/j.freeradbiomed.2007.11.004.
[27] Zakhari, S. Overview: how is alcohol metabolized by the body?. Alcohol Res Health.2006, 29, 245,
[28] Misra, U.K.; Bradford, B.U.; Handier, J.A.; Thurman, R.G. Chronic ethanol treatment induces H2O2 production selectively in pericentral regions of the liver lobule. Alcohol Clin Exp Res. 1992 16 839-842, https://doi.org/10.1111/j.1530-0277.1992.tb01878.x.
[29] Lu, Y.; George, J. Interaction between fatty acid oxidation and ethanol metabolism in liver. Am. J. Physiol.-Gastrointest. Liver Physiol.2024. https://doi.org/10.1152/ajpgi.00281.2023.
[30] Kruman, I. I.; Henderson, G. I.; Bergeson, S. E. DNA damage and neurotoxicity of chronic alcohol abuse. Exp Biol Med (Maywood). 2012, 237, 740-7, https://doi.org/10.1258/ebm.2012.011421.
[31] Zimatkin, S.M.; Pronko, S.P.; Vasiliou, V.; Gonzalez, F.J.; Deitrich, R.A. Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res. 2006, 30, 1500-5, https://doi.org/10.1111/j.1530-0277.2006.00181.x.
[32] Edenberg, H.J.; McClintick, J.N. Alcohol Dehydrogenases, Aldehyde Dehydrogenases, and Alcohol Use Disorders: A Critical Review. Alcohol Clin Exp Res. 2018, 42, 2281–2297, https://doi.org/10.1111/acer.13904.
[33] Steinmetz, C.G.; Xie, P.; Weiner, H.; Hurley, T.D. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure. 1997, 15, 701-11. https://doi.org/10.1016/s0969-2126(97)00224-4.
[34] Johansson, K.; Ramaswamy, S.; Eklund, H.; El-Ahmad, M.; Hjelmqvist, L.; Jörnvall, H. Structure of betaine aldehyde dehydrogenase at 2.1 Å resolution. Protein Sci.1998, 7 (10), 2106–2117. https://doi.org/10.1002/pro.5560071007
[35] Gao, J.; Hao, Y.; Piao, X.; Gu, X. Aldehyde dehydrogenase 2 as a therapeutic target in oxidative stress-related diseases. Int. J. Mol. Sci.2022, 23 (5), 2682. https://doi.org/10.3390/ijms23052682
[36] Koppaka, V.; Thompson, D. C.; Chen, Y.; Ellermann, M.; Nicolaou, K. C.; Juvonen, R. O.; Petersen, D.; Deitrich, R.A.; Hurley, T.D.; Vasiliou, V. Aldehyde dehydrogenase inhibitors: A comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev.2012, 64 (3), 520–539. https://doi.org/10.1124/pr.111.005538
[37] Crabb, D.W.; Matsumoto, M.; Chang, D.; You, M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc. 2004, 63, 49-63, https://doi.org/10.1079/pns2003327.
[38] Yokoyama, A.; Muramatsu, T.; Omori, T.; Yokoyama, T.; Matsushita, S.; Higuchi, S.;Maruyama K.; Ishii, H. Alcohol and aldehyde dehydrogenase gene polymorphisms and oropharyngolaryngeal, esophageal and stomach cancers in Japanese alcoholics. Carcinogenesis2001, 22 (3), 433–439. https://doi.org/10.1093/carcin/22.3.433
[39] Yokoyama, A.; Muramatsu, T.; Ohmori, T.; Yokoyama, T.; Okuyama, K.; Takahashi, H.; Hasegawa, Y.; Higuchi, S.; Maruyama, K.; Shirakura, K.; Ishii, H. Alcohol-related cancers and aldehydrogenase-2 in Japanese alcoholics. Carcinogenesis1998, 19 (8), 1383–1387. https://doi.org/10.1093/carcin/19.8.1383
[40] Chen, L.; Wang, M.; Villalta, P. W.; Luo, X.; Feuer, R.; Jensen, J.; Hatsukami, D.K.; Hecht, S.S. Quantitation of an acetaldehyde adduct in human leukocyte DNA and the effect of smoking cessation. Chem Res Toxicol. 2007, 20, 108-13, https://doi.org/10.1021/tx060232x.
[41] Brooks, P.J.; Zakhari, S. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis. Environ Mol Mutagen. 2014, 55, 77-91, https://doi.org/10.1002/em.21824.
[42] Vaca, C.E.; Fang, J.L.; Schweda, E.K. Studies of the reaction of acetaldehyde with deoxynucleosides. Chem Biol Interact. 1995, 98, 51-67. https://doi.org/10.1016/0009-2797(95)03632-v.
[43] Matsuda, T.; Matsumoto, A.; Uchida, M.; Kanaly, R.A.; Misaki, K.; Shibutani, S.; Kawamoto, T.; Kitagawa, K.; Nakayama, I.K.; Tomokuni, K.; Ichiba, M. Increased formation of hepatic N 2-ethylidene-2′-deoxyguanosine DNA adducts in aldehyde dehydrogenase 2-knockout mice treated with ethanol. Carcinogenesis, 2007, 28, 2363-6, https://doi.org/10.1093/carcin/bgm057.
[44] Terashima, I.; Matsuda, T.; Fang, T. W.; Suzuki, N.; Kobayashi, J.; Kohda, K.; Shibutani, S. Miscoding potential of the N 2-ethyl-2 ‘-deoxyguanosine DNA adduct by the exonuclease-free Klenow fragment of Escherichia coli DNA polymerase I. Biochemistry, 2001, 40, 4106-4114, https://doi.org/10.1021/bi002719p.
[45] Cheng, T.F.; Hu, X.; Gnatt, A.; Brooks, P.J. Differential blocking effects of the acetaldehyde-derived DNA lesion N²-ethyl-2′-deoxyguanosine on transcription by multisubunit and single subunit RNA polymerases. J. Biol. Chem.2008, 283 (41), 27820–27828. https://doi.org/10.1074/jbc.M804086200
[46] Yu, H. S.; Oyama, T.; Matsuda, T.; Isse, T.; Yamaguchi, T.; Tanaka, M.; Kawamoto, T. The effect of ethanol on the formation of N 2-ethylidene-dG adducts in mice: Implications for alcohol-related carcinogenicity of the oral cavity and esophagus. Biomarkers. 2012, 17, 269-74, https://doi.org/10.3109/1354750X.2012.666675.
[47] Wang, M.; McIntee, E.J.; Cheng, G.; Shi, Y.; Villalta, P.W.; Hecht, S.S. Identification of DNA adducts of acetaldehyde. Chem Res Toxicol. 2000,13,1149-57, https://doi.org/10.1021/tx000118t.
[48] Brooks, P.J.; Zakhari, S. Acetaldehyde and the genome: Beyond nuclear DNA adducts and carcinogenesis. Environ. Mol. Mutagen.2014, 55 (1), 77–91. https://doi.org/10.1002/em.21824
[49] Hodskinson, M.R.; Bolner, A.; Sato, K.; Kamimae-Lanning, A.N.; Rooijers, K.; Witte, M.; Silhan, J.; Petek, M.; Williams, D.M.; Kind, J.; Chin, J.W.; Patel K.J.; Knipscheer, P. Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms. Nature. 2020, 579, 603-608, https://doi.org/10.1038/s41586-020-2059-5.
[50] Crespo-Hernández, C.E.; Close, D.M.; Gorb, L.; Leszczynski, J. Determination of redox potentials for the watson− crick base pairs, DNA nucleosides, and relevant nucleoside analogues. J Phys Chem B. 2007, 111, 5386-95, https://doi.org/10.1021/jp0684224.
[51] Núñez, M.E.; Noyes, K.T.; Gianolio, D.A.; McLaughlin, L.W.; Barton, J.K. Long-range guanine oxidation in DNA restriction fragments by a triplex-directed naphthalene diimide intercalator. Biochemistry. 2000, 39, 6190-9 https://doi.org/10.1021/bi000285s.
[52] Kasai, H.; Nishimura, S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res.1984, 12, 2137-45 https://doi.org/10.1093/nar/12.4.2137.
[53] Thomas, E.N.; Simms, C.L.; Keedy, H.E.; Zaher, H.S. Insights into the base-pairing preferences of 8-oxoguanosine on the ribosome. Nucleic Acids Res.2019, 47 (18), 9857–9870. https://doi.org/10.1093/nar/gkz701
[54] Hahm, J.Y.; Park, J.; Jang, E.S.; Chi, S.W. 8-Oxoguanine: From oxidative damage to epigenetic and epitranscriptional modification. Exp. Mol. Med.2022, 54 (10), 1626–1642. https://doi.org/10.1038/s12276-022-00822-z
[55] Cheng, K.C.; Cahill, D.S.; Kasai, H.; Nishimura, S.; Loeb, L.A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes GT and AC substitutions. J Biol Chem.1992, 267, 166-72, https://doi.org/10.1016/S0021-9258(18)48474-8.
[56] Mizumoto, A.; Ohashi, S.; Hirohashi, K.; Amanuma, Y.; Matsuda, T.; Muto, M. Molecular mechanisms of acetaldehyde-mediated carcinogenesis in squamous epithelium. Int J Mol Sci.2017, 18, 1943, https://doi.org/10.3390/ijms18091943.
[57] Choudhury, S.; Pan, J.; Amin, S.; Chung, F.L.; Roy, R. Repair kinetics of trans-4-Hydroxynonenal-induced cyclic 1, N 2-propanodeoxyguanine DNA adducts by human cell nuclear extracts. Biochemistry. 2004, 43, 7514–7521, https://doi.org/10.1021/bi049877r.
[58] Rajendra, E.; Garaycoechea, J.I.; Patel, K.J.; Passmore, L.A. Abundance of the Fanconi anaemia core complex is regulated by the RuvBL1 and RuvBL2 AAA+ ATPases. Nucleic Acids Res. 2014, 42, 13736-48, https://doi.org/10.1093/nar/gku1230.
[59] Dong, H.; Nebert, D.W.; Bruford, E.A.; Thompson, D.C.; Joenje, H.; Vasiliou, V. Update of the human and mouse Fanconi anemia genes. Hum Genomics. 2015, 9, 1-10, https://doi.org/10.1186/s40246-015-0054-y.
[60] Rodríguez, A.; D’Andrea, A. Fanconi anemia pathway. Curr Biol. 2017, 27, R986-R988, https://doi.org/10.1016/j.cub.2017.07.043.
[61] Bhattacharjee, S.; Nandi, S. DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Commun Signal. 2017, 15, 41, https://doi.org/10.1186/s12964-017-0195-9.
[62] Niedzwiedz, W.; Mosedale, G.; Johnson, M.; Ong, C.Y.; Pace, P.; Patel, K.J. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol Cell.2004, 15, 607-20 https://doi.org/10.1016/j.molcel.2004.08.009.
[63] Banda, D. M.; Nuñez, N.N.; Burnside, M.A.; Bradshaw, K.M.; David, S.S. Repair of 8-oxoG: A mismatches by the MUTYH glycosylase: Mechanism, metals and medicine. Free Radic Biol Med.2017,107, 202-215, https://doi.org/10.1016/j.freeradbiomed.2017.01.008.
[64] Hirano, T. Alcohol consumption and oxidative DNA damage. Int J Environ Res Public Health. 2011, 8, 2895-906, https://doi.org/10.3390/ijerph8072895.
[65] Markkanen, E.; Dorn, J.; Hübscher, U. MUTYH DNA glycosylase: the rationale for removing undamaged bases from the DNA. Front Genet.2013, 4,18 https://doi.org/10.3389/fgene.2013.00018.
[66] Li, C.; Xue, Y.; Ba, X.; Wang, R. The role of 8-oxoG repair systems in tumorigenesis and cancer therapy. Cells2022, 11 (23), 3798. https://doi.org/10.3390/cells11233798
[67] Francis, A. W.; David, S.S. Escherichia coli MutY and Fpg utilize a processive mechanism for target location. Biochemistry. 2003, 42, 801-10. https://doi.org/10.1021/bi026375.
[68] Kakuma, T.; Nishida, J.; Tsuzuki, T.; Sekiguchi, M. Mouse MTH1 protein with 8-oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphatase activity that prevents transversion mutation. J. Biol. Chem.1995, 270 (43), 25942–25948. https://doi.org/10.1074/jbc.270.43.25942
Downloads
Abstract Display: 38
PDF Downloads: 30 Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.
