InOsteoD: A Cost-effective Integrative Approach for Osteoporosis Detection
DOI:
https://doi.org/10.63635/mrj.v1i1.5Keywords:
Osteoporosis, X-ray Deep learning, features;, classificationAbstract
Osteoporosis is a prevalent bone condition that typically affects older adults, occurring when bone mineral density and bone mass decline or when the bone’s quality or structure deteriorates. It increases the risk of bone fractures and causes many complications for patients. X-ray is a low-cost medical imaging test that can be used for predicting Osteoporosis by extracting relevant and non-redundant features followed by appropriate downstream analysis. This paper presents a cost-effective integrative approach called InOsteoD that exploits both deep learning as well as tree-based ensemble learning to detect Osteoporosis from X-ray images with high precision. The performance of InOsteoD has been found satisfactory on real-life datasets.
References
[1] Council, N.R.; Diet and Health: Implications for Reducing Chronic Disease Risk; 1989.
[2] Arnaud, C.D. The calcitropic hormones and metabolic bone disease. Basic Clin. Endocrinol. 1986, 202–271.
[3] Baron, R. Lymphocytes, macrophages, and the regulation of bone remodeling. Bone Miner. Res. 1984, 2, 175–243.
[4] Dobbs, M.B.; Buckwalter, J.; Saltzman, C. Osteoporosis: the increasing role of the orthopaedist. Iowa Orthop. J. 1999, 19, 43.
[5] Odell, W.; Swerdloff, R. Male hypogonadism. West. J. Med. 1976, 124(6), 446.
[6] Alshehri, M. Osteoporosis, osteopenia, and osteomalacia. Indo Am. J. Pharm. Sci. 2019, 06(02), 3356–3361, https://doi.org/10.5281/zenodo.2560732.
[7] Jacoby, I.; Clark, S.M. Direct mailing as a means of disseminating NIH consensus statements: a comparison with current techniques. JAMA 1986, 255(10), 1328–1330.
[8] Mazess, R.B.; Barden, H. Single-and dual-photon absorptiometry for bone measurement in osteoporosis. Osteoporos. Update 1987, 73–80.
[9] Genant, H.K.; Block, J.E.; Steiger, P.; Glueer, C.-C.; Smith, R. Quantitative computed tomography in the assessment of osteoporosis. Semin. Nucl. Med. 1987, 17, 316–333.
[10] Johnell, O.; Kanis, J. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17(12), 1726–1733. https://doi.org/10.1007/s00198-006-0172-4
[11] Kanis, J.; Johnell, O.; Oden, A.; Sernbo, I.; Redlund-Johnell, I.; Dawson, A.; De Laet, C.; Jonsson, B. Long-term risk of osteoporotic fracture in Malmö. Osteoporos. Int. 2000, 11(8), 669–674. https://doi.org/10.1007/s001980070064
[12] Melton III, L.J.; Atkinson, E.J.; O’Connor, M.K.; O’Fallon, W.M.; Riggs, B.L. Bone density and fracture risk in men. J. Bone Miner. Res. 1998, 13(12), 1915–1923. https://doi.org/10.1359/jbmr.1998.13.12.1915
[13] Melton III, L.J.; Chrischilles, E.A.; Cooper, C.; Lane, A.W.; Riggs, B.L. Perspective: How many women have osteoporosis? J. Bone Miner. Res. 1992, 7(9), 1005–1010.
https://doi.org/10.1002/jbmr.5650070902
[14] Curtis, E.M.; van der Velde, R.; Moon, R.J.; van den Bergh, J.P.; Geusens, P.; de Vries, F.; van Staa, T.P.; Cooper, C.; Harvey, N.C. Epidemiology of fractures in the United Kingdom 1988–2012: variation with age, sex, geography, ethnicity, and socioeconomic status. Bone 2016, 87, 19–26.
https://doi.org/10.1016/j.bone.2016.03.006
[15] Kanis, J.A.; Norton, N.; Harvey, N.C.; Jacobson, T.; Johansson, H.; Lorentzon, M.; McCloskey, E.V.; Willers, C.; Borgström, F. SCOPE 2021: A new scorecard for osteoporosis in Europe. Arch. Osteoporos. 2021, 16(1), 1–82. https://doi.org/10.1007/s11657-020-00871-9
[16] Gullberg, B.; Johnell, O.; Kanis, J. World-wide projections for hip fracture. Osteoporos. Int. 1997, 7(5), 407–413. https://doi.org/10.1007/pl00004148
[17] Oei, L.; Koromani, F.; Rivadeneira, F.; Zillikens, M.C.; Oei, E.H. Quantitative imaging methods in osteoporosis. Quant. Imaging Med. Surg. 2016, 6(6), 680. https://doi.org/10.21037/qims.2016.12.13
[18] Cootes, T.F.; Taylor, C.J. Active shape models—‘smart snakes.’ In BMVC92; Springer 1992; pp. 266–275.
[19] Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 2017, 50(6), 1–45. https://doi.org/10.1145/3136625
[20] Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40(1), 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024
[21] Fleuret, F. Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 2004, 5(Nov), 1531–1555.
[22] Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8), 1226–1238.
https://doi.org/10.1109/tpami.2005.159
[23] Sarmah, U.; Bhattacharyya, D. Cost-effective detection of cyber-physical system attacks. In Adv. Mach. Learn. Big Data Anal.; Springer 2022; pp. 33–69. http://dx.doi.org/10.1007/978-981-16-8930-7_2
[24] Borah, P.; Bhattacharyya, D.K.; Kalita, J.K. Cost-effective method for ransomware detection: An ensemble approach. In Int. Conf. Distrib. Comput. Internet Technol.; Springer 2021; pp. 203–219.
http://dx.doi.org/10.1007/978-3-030-65621-8_13
[25] Osisanwo, F.; Akinsola, J.; Awodele, O.; Hinmikaiye, J.; Olakanmi, O.; Akinjobi, J. Supervised machine learning algorithms: Classification and comparison. Int. J. Comput. Trends Technol. (IJCTT) 2017, 48(3), 128–138. https://doi.org/ 10.14445/22312803/IJCTT-V48P126
[26] Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160(1), 3–24.
[27] Ferizi, U.; Honig, S.; Chang, G. Artificial intelligence, osteoporosis, and fragility fractures. Curr. Opin. Rheumatol. 2019, 31(4), 368. https://doi.org/10.1097/bor.0000000000000607
[28] Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proc. IEEE Int. Conf. Comput. Vis. 2017; pp. 618–626. https://link.springer.com/article/10.1007/s11263-019-01228-7
[29] Sarmah, U.; Bhattacharyya, D.K. Cost-effective detection of cyber-physical system attacks. In Adv. Mach. Learn. Big Data Anal.; Springer: Singapore 2022; pp. 33–69. https://doi.org/10.1007/978-981-16-8930-7_2
[30] Sarmah, U.; Borah, P.; Bhattacharyya, D.K. Ensemble learning methods: An empirical study. SN Comput. Sci. 2024, 5(7), 924. https://doi.org/10.1007/s42979-024-03252-y
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.
How to Cite
Similar Articles
- Sarlin Pohthmi, Bhabesh Deka, Manuj Kumar Hazarika, Debarun Chakraborty, Early Detection of Bruises in Khasi mandarin (Citrus reticulata Blanco) for the Assessment of Post Harvesting Losses: A Machine Learning Approach , Multidisciplinary Research Journal: Volume 1, Issue 1, 2025
- Shagufta Rizwana, Manuj Kumar Hazarika, Near Infrared Spectroscopy and Machine Learning for Non-Destructive Estimation of Ageing of Komal Chaul , Multidisciplinary Research Journal: Volume 1, Issue 2, 2025
- Shurhonuo Tsurho, Hiamthuiyang James, Enhancing Digital Literacy as an Imperative Necessity for Academic Excellence and Lifelong Learning , Multidisciplinary Research Journal: Volume 1, Issue 2, 2025
- Priyanka Ashish, Manikanth Karnati, Adline Siona Rebello, Guan-Yu Zhuo, Nirmal Mazumder, Sib Sankar Mal, Hemanth Noothalapati, Tatsuyuki Yamamoto, Structural and Optical Characterization of Starch Granules Due to the Effect of α-Amylase , Multidisciplinary Research Journal: Volume 1, Issue 1, 2025
- Kabita Devi, Siddeswars Bargur Linganna, Bhabesh Deka, Impact of Meditation on Mental Health: A Case Study with Two Meditation Practices using Heart Rate Variability , Multidisciplinary Research Journal: Volume 1, Issue 1, 2025
- Anurag Jayswal, Kabita Devi, Bhabesh Deka, Deepeshwar Singh, Ramesh C Deka, Suvendra Kumar Ray, A Longitudinal Single Case Study on Short-Duration Mind-Body Relaxation and Rejuvenation Technique Inspired from Ancient Mālā Japa , Multidisciplinary Research Journal: Volume 1, Issue 1, 2025
- Mintu Moni Sarma, Suvendra Kumar Ray, Ramesh Chandra Deka, The salutogenic approach in community mental health: A single case study of Schizophrenia remission in Bodoland Territorial Region, Assam, India , Multidisciplinary Research Journal: Volume 1, Issue 2, 2025
- Raghavendra Patil, Anurag Jayswal, Umesh Ghate, Ramesh C Deka, Suvendra Kumar Ray, Vivek Bhosale, A case study on healthy weight loss in a diabetic male by an integrative approach of diet, yoga asana, and Dhauti , Multidisciplinary Research Journal: Volume 1, Issue 2, 2025
- Barbara Snook, Ralph Buck, What page are we on? Interdisciplinary examples of the ‘what’ and ‘how’ in the ‘doing’ , Multidisciplinary Research Journal: Volume 1, Issue 1, 2025
- Nenggousuan Naulak, Ambika Aiyadurai, Krista R Khiangte, Sial and the Zo: Understanding Human-Mithun Relations in Sialkal Range, Mizoram , Multidisciplinary Research Journal: Volume 1, Issue 1, 2025
You may also start an advanced similarity search for this article.